Euphytica

, Volume 161, Issue 1–2, pp 133–139 | Cite as

Population genetic simulation and data analysis with Plabsoft

  • Hans Peter Maurer
  • Albrecht E. Melchinger
  • Matthias Frisch
Article

Abstract

Computer simulations are a useful tool to solve problems in population genetics for which no analytical solutions are available. We developed Plabsoft, a powerful and flexible software for population genetic simulation and data analysis. Various mating systems can be simulated, comprising planned crosses, random mating, partial selfing, selfing, single-seed descent, double haploids, topcrosses, and factorials. Selection can be simulated according to selection indices based on phenotypic values and/or molecular marker scores. Data analysis routines are provided to analyze simulated and experimental datasets for allele and genotype frequencies, genotypic and phenotypic values and variances, molecular genetic diversity, linkage disequilibrium, and parameters to optimize marker-assisted backcrossing programs. Plabsoft has already been employed in numerous studies, we chose some of them to illustrate the functionality of the software.

Keywords

Breeding informatics Computer simulation Data analysis Population genetics 

References

  1. Becker RA, Chambers JM (1981) S: a language and system for data analysis bell laboratories computer information service. Murray Hill, New JerseyGoogle Scholar
  2. Bulmer MG (1985) The mathematical theory of quantitative genetics. Oxford University Press, OxfordGoogle Scholar
  3. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:197–302CrossRefGoogle Scholar
  4. Dreisigacker S, Zhang P, Warburton ML, Van Ginkel M, Hoisington D, Bohn M, Melchinger AE (2004) SSR and pedigree analyses of genetic diversity among CIMMYT wheat lines targeted to different megaenvironments. Crop Sci 44:381–388CrossRefGoogle Scholar
  5. Dreisigacker S, Zhang P, Warburton ML, Skovmand B, Hoisington D, Melchinger AE (2005) Genetic diversity among and within CIMMYT wheat landrace accessions investigated with SSRs and implications for plant genetic resources management. Crop Sci 45:653–661CrossRefGoogle Scholar
  6. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  7. Falke KC, Maurer HP, Melchinger AE, Piepho H-P, Flachenecker C, Frisch M (2007a) Linkage disequilibrium in two European F2 flint maize populations under modified recurrent full-sib selection. Theor Appl Genet 115:289–297PubMedCrossRefGoogle Scholar
  8. Falke KC, Maurer HP, Melchinger AE, Piepho H-P, Flachenecker C, FrischM (2007b) Linkage disequilibrium in two European F2 flint maize populations under modified recurrent full-sib selection. Theor Appl Genet 115:299Google Scholar
  9. Franklin I, Lewontin RC (1970) Is the gene the unit of selection? Genetics 65:707–734PubMedGoogle Scholar
  10. Frisch M, Bohn M, Melchinger AE (1999) Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci 39:1295–1301CrossRefGoogle Scholar
  11. Frisch M, Bohn M, Melchinger AE (2000) Plabsim: software for simulation of marker-assisted backcrossing. J Hered 91:86–87PubMedCrossRefGoogle Scholar
  12. Frisch M, Melchinger AE (2001a) Marker-assisted backcrossing for introgression of a recessive gene. Crop Sci 41:1485–1494CrossRefGoogle Scholar
  13. Frisch M, Melchinger AE (2001b) Marker-assisted backcrossing for simultaneous introgression of two genes. Crop Sci 41:1716–1725CrossRefGoogle Scholar
  14. Frisch M, Melchinger AE (2005) Selection theory for marker-assisted backcrossing. Genetics 170:909–917PubMedCrossRefGoogle Scholar
  15. Frisch M, Melchinger AE (2006) Marker-based prediction of the parental genome contribution to inbred lines derived from biparental crosses. Genetics 174:795–803PubMedCrossRefGoogle Scholar
  16. Galassi M, Davies J, Theiler J, Gough B, Jungman G, Booth M, Rossi F (2006) GNU scientific library reference manual—revised second edition (v 18). Network Theory Ltd, Bristol UKGoogle Scholar
  17. GMP (2006) GNU multiple precision arithmetic library. http://www.swox.com/gmp. Cited 27 Nov 2006
  18. Haldane JBS (1919) The combination of linkage values and the calculation of distances between linked factors. J Genet 8:299–309Google Scholar
  19. Hedrick PW (1987) Gametic disequilibrium measures: proceed with caution. Genetics 117:331–341PubMedGoogle Scholar
  20. Heckenberger M, Bohn M, Melchinger AE (2005a) Identification of essentially derived varieties obtained from biparental crosses of homozygous lines: I Simple sequence repeat data from maize inbreds. Crop Sci 45:1120–1131CrossRefGoogle Scholar
  21. Heckenberger M, Bohn M, Klein D, Melchinger AE (2005b) Identification of essentially derived varieties obtained from biparental crosses of homozygous lines: II Morphological distances and heterosis in comparison with simple sequence repeat and amplified fragment length polymorphism data in maize. Crop Sci 45:1132–1140CrossRefGoogle Scholar
  22. Heckenberger M, Bohn M, Frisch M, Maurer HP, Melchinger AE (2005c) Identification of essentially derived varieties with molecular markers: an approach based on statistical test theory and computer simulations. Theor Appl Genet 111:598–608PubMedCrossRefGoogle Scholar
  23. Heckenberger M, Melchinger AE, Maurer HP, Frisch M (2007) The Plabsoft-Database—a comprehensive database management system for integrating phenotypic and genomic data in academic and commercial plant breeding programs. Euphytica doi: 10.1007/s10681-007-9478-3Google Scholar
  24. Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231CrossRefGoogle Scholar
  25. Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314CrossRefGoogle Scholar
  26. Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bul Soc Vaudoise Sci Nat 44:223–270Google Scholar
  27. Karlin S, Liberman U (1978) Classification of multilocus recombination distributions. Proc Nat Acad Sci USA 75:6332–6336PubMedCrossRefGoogle Scholar
  28. Kernighan BW, Ritchie DM (1988) The C Programming Language, (2nd edn, ANSI C), Prentice HallGoogle Scholar
  29. Laval G, Excoffier L (2004) SIMCOAL 2.0: a program to simulate genomic diversity over large recombining regions in a subdivided population with a complex history. Bioinformatics 20:2485–2487PubMedCrossRefGoogle Scholar
  30. Lewontin RC (1964) The interaction of selection and linkage I General considerations; Heterotic models. Genetics 49:49–67PubMedGoogle Scholar
  31. Liu K, Muse SV (2005) Powermarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129PubMedCrossRefGoogle Scholar
  32. Maruyama T (1982) Stochastic integrals and their application to population genetics. In: Kimura M (ed) Molecular evolution, protein polymorphism and the neutral theory. Springer-Verlag, Berlin, pp 151–166Google Scholar
  33. Maurer HP, Knaak C, Melchinger AE, Ouzunova M, Frisch M (2006) Linkage disequilibrium between SSR markers in six pools of elite lines of an European breeding program for hybrid maize. Maydica 51:269–279Google Scholar
  34. Maurer HP, Melchinger AE, Frisch M (2007) An incomplete enumeration algorithm for an exact test of Hardy-Weinberg proportions with multiple alleles. Theor Appl Genet doi: 10.1007/s00122-007-0573-6
  35. Muminović J, Melchinger AE, Lübberstedt T (2004a) Prospects for celeriac (Apium graveolens var rapaceum) improvement by using genetic resources of Apium, as determined by AFLP markers and morphological characterization. Plant Genet Resour 2:189–198CrossRefGoogle Scholar
  36. Muminović J, Melchinger AE, Lübberstedt T (2004b) Genetic diversity in cornsalad (Valerianella locusta) and related species as determined by AFLP markers. Plant Breed 123:460–466CrossRefGoogle Scholar
  37. Muminović J, Merz A, Melchinger AE, Lübberstedt T (2005) Genetic structure and diversity among radish varieties as inferred from AFLP and ISSR analyses. J Am Soc Hortic Sci 130:79–87Google Scholar
  38. Nei M, Li WH (1979) Mathematical Models for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5268–5371CrossRefGoogle Scholar
  39. Podlich DW, Cooper M (1998) QU-GENE: a simulation platform for quantitative analysis of genetic models. Bioinformatics 14:632–653PubMedCrossRefGoogle Scholar
  40. Reif JC, Melchinger AE, Xia XC, Warburton ML, Hoisington DA, Vasal SK, Srinivasan G, Bohn M, Frisch M (2003a) Genetic distance based on simple sequence repeats and heterosis in tropical maize populations. Crop Sci 43:1275–1282CrossRefGoogle Scholar
  41. Reif JC, Melchinger AE, Xia XC, Warburton ML, Hoisington DA, Vasal SK, Beck D, Bohn M, Frisch M (2003b) Use of SSRs for establishing heterotic groups in subtropical maize. Theor Appl Genet 107:947–957PubMedCrossRefGoogle Scholar
  42. Reif JC, Xia XC, Melchinger AE, Warburton ML, Hoisington DA, Beck D, Bohn M, Frisch M (2004) Genetic diversity determined within and among CIMMYT maize populations of tropical, subtropical, and temperate germplasm by SSR markers. Crop Sci 44:326–334CrossRefGoogle Scholar
  43. Reif JC, Zhang P, Dreisigacker S, Warburton ML, Van Ginkel M, Hoisington D, Bohn M, Melchinger AE (2005a) Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet 110:859–864PubMedCrossRefGoogle Scholar
  44. Reif JC, Melchinger AE, Frisch M (2005b) Genetical and mathematical properties of similarity coefficients applied in plant breeding and seed bank management. Crop Sci 45:1–7CrossRefGoogle Scholar
  45. Reif JC, Hamrit S, Heckenberger M, Schipprack W, Maurer HP, Bohn M, Melchinger AE (2005c) Trends in genetic diversity among European maize cultivars and their parental components during the past 50 years. Theor Appl Genet 111:838–845PubMedCrossRefGoogle Scholar
  46. Reif JC, Hamrit S, Heckenberger M, Schipprack W, Maurer HP, Bohn M, Melchinger AE (2005d) Genetic structure and diversity of European flint maize populations determined with SSR analyses of individuals and bulks. Theor Appl Genet 111:906–913PubMedCrossRefGoogle Scholar
  47. Reif JC, Warburton ML, Xia XC, Hoisington DA, Crossa J, Taba S, Muminović J, Bohn M, Frisch M, Melchinger AE (2006a) Classification of Mexican races of maize revisited with SSR markers. Theor Appl Genet 113:177–185PubMedCrossRefGoogle Scholar
  48. Reif JC, Hamrit S, Melchinger AE (2006b) Genetic diversity trends in Central European heterotic groups. Acta Agronomica Hungarica 54:315–320CrossRefGoogle Scholar
  49. Rogers JS (1972) Measures of genetic similarity and genetic distance VII. Univ Tex Publ 7213:145–153Google Scholar
  50. Rohlf FJ (2002) NTSYSpc: Numerical Taxonomy System, ver 2.1. Exeter Publishing Ltd, Setauket NYGoogle Scholar
  51. Stam P (1979) Interference in genetic crossing over and chromosome mapping. Genetics 92:573–594PubMedGoogle Scholar
  52. Stich B, Melchinger AE, Frisch M, Maurer HP, Heckenberger M, Reif JC (2005) Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Theor Appl Genet 111:723–730PubMedCrossRefGoogle Scholar
  53. Stich B, Maurer HP, Melchinger AE, Frisch M, Heckenberger M, Rouppe van der Voort J, Peleman J, Srensen AP, Reif JC (2006a) Comparison of linkage disequilibrium in elite European maize inbred lines using AFLP and SSR markers. Mol Breed 17:217–226CrossRefGoogle Scholar
  54. Stich B, Melchinger AE, Piepho H-P, Heckenberger M, Maurer HP, Reif JC (2006b) A new test for family-based association mapping with inbred lines from plant breeding programs. Theor Appl Genet 113:1121–1130PubMedCrossRefGoogle Scholar
  55. Stich B, Melchinger AE, Piepho H-P, Hamrit S, Schipprack W, Maurer HP, Reif JC (2007) Potential causes of linkage disequilibrium in a European maize breeding program investigated with computer simulations. Theor Appl Genet doi: 10.1007/s00122-007-0586-1Google Scholar
  56. Tams SH, Melchinger AE, Bauer E (2005) Genetic similarity among European winter triticale elite germplasms assessed with AFLP and comparisons with SSR and pedigree data. Plant Breed 124:154–160CrossRefGoogle Scholar
  57. Tinker NA, Mather DE (1993) Gregor: software for genetic simulation. J Hered 84:237Google Scholar
  58. Wright S (1978) Evolution and the genetics of populations, vol 4: variability within and among natural populations. University of Chicago Press, Chicago, IllinoisGoogle Scholar
  59. Xia XC, Reif JC, Hoisington DA, Melchinger AE, Frisch M, Warburton ML (2004) Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers: I Lowland tropical maize. Crop Sci 44:2230–2237CrossRefGoogle Scholar
  60. Xia XC, Reif JC, Melchinger AE, Frisch M, Hoisington DA, Warburton ML (2005) Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers: II Subtropical, tropical mid-altitude and highland maize inbred lines and their relationships with elite US and European maize. Crop Sci 45:2573–2582CrossRefGoogle Scholar
  61. Zhang P, Dreisigacker S, Melchinger AE, Reif JC, Mujeeb-Kazi A, Van Ginkel M, Hoisington D, Warburton ML (2005) Quantifying novel sequence variation and selective advantage in synthetic hexaploid wheats and their backcross-derived lines using SSR markers. Mol Breed 15:1–10CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Hans Peter Maurer
    • 1
  • Albrecht E. Melchinger
    • 1
  • Matthias Frisch
    • 1
  1. 1.Institute of Plant Breeding, Seed Science, and Population GeneticsUniversity of HohenheimStuttgartGermany

Personalised recommendations