Euphytica

, Volume 156, Issue 1–2, pp 141–156 | Cite as

Microsatellite markers associated with lint percentage trait in cotton, Gossypium hirsutum

  • I. Y. Abdurakhmonov
  • Z. T. Buriev
  • S. Saha
  • A. E. Pepper
  • J. A. Musaev
  • A. Almatov
  • S. E. Shermatov
  • F. N. Kushanov
  • G. T. Mavlonov
  • U. K. Reddy
  • J. Z. Yu
  • J. N. Jenkins
  • R. J. Kohel
  • A. Abdukarimov
Article

Abstract

Molecular markers associated with fiber development traits have the potential to play a key role in understanding of cotton fiber development. Seventeen SSRs out of 304 markers tested from MGHES (EST-SSR), JESPR (genomic SSR), and TMB (BAC-derived SSR) collections showed significant linkage associations (using a Kurskal-Wallis non-parametric test) with lint percentage QTL in a set of recombinant inbred cotton lines (RILs) segregating for lint percentage. The permutation test of these potential markers associated with lint percentage QTL(s) determined that 12 SSR markers have stable estimates, exceeding empirically chosen threshold significance values at or above α = 0.01. Interval mapping demonstrated that 9 SSRs with stable critical LOD threshold values at α = 0.01 have significant QTL effect. Multiple QTL-mapping (MQM) revealed that at least, two highly significant fiber development QTLs exist around regions TMB0471 and MGHES–31 (explained about 23–59% of the phenotypic variation of lint percentage) and around markers MGHES–31 and TMB0366 (accounted for 5.4–12.5% phenotypic variation of lint percentage). These markers, in particular fiber-specific EST-SSRs, might be the possible ‘candidate’ loci contributing for fiber development in cotton. BAC-derived SSRs associated with fiber trait are the possible markers that are useful for the identification of physical genomic contigs that contain fiber development genes. Several lint percentage trait associated SSR markers have been located to chromosomes 12, 18, 23, and 26 using deletion analysis in aneuploid chromosome substitution lines. Outcomes of the work may prove useful in understanding and revealing the molecular basis of the fiber development, and the utilization of these markers for development of superior cotton cultivars through marker-assisted selection (MAS) programs.

Keywords

Fuzzless/lintless cotton lines Simple Sequence Repeats (SSRs) Expressed Sequence Tag-Simple Sequence Repeats (EST-SSR) Quantitative Trait Loci (QTL)-mapping Cotton lint percentage 

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Akkaya MS, Bhagwat AA, Cregan PB (1995) Integration of simple sequence repeat DNA markers into a soybean linkage map. Crop Sci35:1439–1445CrossRefGoogle Scholar
  3. Arpat AB, Waugh M, Sullivan JP, Gonzales M, Frisch D, Main D, Wood T, Leslie A, Wing RA, Wilkins TA (2004) Functional genomics of cell elongation in developing cotton fibers. Plant Mol Biol 54:911–929PubMedCrossRefGoogle Scholar
  4. Asnaghi C, Blewitt M, Guo Y, Lin D, Burr B (2001) Identification of genes involved in quality of cotton fiber by fiber cDNA microarray and QTL analysis. In: Plant and animal genomes IX conference, P5q_26.html. San Diego, CaliforniaGoogle Scholar
  5. Balls WL (1912) The cotton plant in Egypt. Macmillan, LondonGoogle Scholar
  6. Basra AS, Saha SS (1999) Growth regulation of cotton fibers. Food product press 47–63Google Scholar
  7. Basra AS, Malik AC (1984) Development of the cotton fiber. Int rev Cytol 9:65–113CrossRefGoogle Scholar
  8. Bell CJ, Ecker JR (1994) Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19:137–144PubMedCrossRefGoogle Scholar
  9. Beavis WD (1994) The power and deceit of QTL experiments: lessons from comparative QTL studies. In: Proceedings of the 49th annual corn and sorghum industry research conference, American Seed Trade Association, Washington, DC, pp 250–266Google Scholar
  10. Blenda, A, Scheffler J, Scheffler B, Palmer M, Lacape JM, Yu JZ, Jesudurai C, Jung S, Muthukumar S, Yellambalase P, Ficklin S, Staton M, Eshelman R, Ulloa M, Saha S, Burr B, Liu S, Zhang T, Fang D, Pepper A, Kumpatla S, Jacobs J, Tomkins J, Cantrell R, Main D (2006) CMD: a cotton microsatellite database resource for Gossypium genomics. BMC genomics 7:132 doi:10.1186/1471–2164–7–132Google Scholar
  11. Brooks TD (2001) Mapping of cotton fiber length and strength quantitative trait loci using microsatellites. PhD Dissertation. Texas A&M University, USAGoogle Scholar
  12. Carver WA (1929) The inheritance of certain seed, leaf and flower characters in Gossypium hirsutum and their genetic interrelations. J Am Soc Agron 21:467–480Google Scholar
  13. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedGoogle Scholar
  14. Darvasi A (1997) The effect of selective genotyping on QTL mapping accuracy. Mamm Genome 8:67–68PubMedCrossRefGoogle Scholar
  15. Darvasi A, Soller M (1992) Selective genotyping for determination of linkage between a marker locus and quantitative trait locus. Theor Appl Genet 85:353–359CrossRefGoogle Scholar
  16. Dellaporta SL, Wood J, Hicks JP (1983) A plant DNA minipreparation: Version II. Plant Mol Biol Rep 1:19–21Google Scholar
  17. Du XM, Pan JJ, Wang RH, Zhang TZ, Shi Y (2001) Genetic analysis of presence and absence of lint and fuzz in cotton. Plant Breed 120:519–522CrossRefGoogle Scholar
  18. Endrizzi JE, Turcotte EL, Kohel RJ (1984) Quantitative genetics, cytology and cytogenetics. In: Cotton Kohel RJ, Lewis CF (eds) Amer Soc Agron Madison. WI, USA, pp 81–129Google Scholar
  19. Endrizzi JE, Turcotte EL, Kohel RJ (1985) Genetics, cytology, and evolution of Gossypium. Adv Genet 23:272–375Google Scholar
  20. Giband, M, Pagant S, Pannetier C, Hofte H (2003) Arabidopsis thaliana as a source of candidate genes for cotton fiber quality. In: The proceedings of the 3rd World Cotton Research Conference. Cape Town, South Africa, pp 58–63Google Scholar
  21. Griffee F, Ligon LL (1929) Occurrence of “lintless” cotton plants and inheritance of character “lintless”. J Am Soc Agron 21:711–717Google Scholar
  22. Haley CS, Knott SA (1992) A simple method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324PubMedGoogle Scholar
  23. Han ZG, Guo WZ, Song XL, Zhang TZ (2004) Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Gen Genomics 272:308–327CrossRefGoogle Scholar
  24. Han ZG, Wang C, Song XL, Guo WZ, Gou J, Li C, Chen X, Zhang TZ (2006) Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet 112(3):430–439PubMedCrossRefGoogle Scholar
  25. Harland SC (1939) The genetics of cotton. Jonathan Cape, LondonGoogle Scholar
  26. Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205–211PubMedGoogle Scholar
  27. Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via Interval mapping. Genetics 136:1447–1455PubMedGoogle Scholar
  28. Ji SS, Lu YC, Feng JX, Wei G, Li S, Shi YH, Fu Q, Liu D, JC Luo, Zhu YX (2003) Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and c DNA array. Nucleic Acid Res 31:2534–2543PubMedCrossRefGoogle Scholar
  29. Karaca M, Saha S, Jenkins JN, Zipf A, Kohel RJ, Stelly MD (2002) Simple sequence Repeat (SSR) markers Linked to the ligon lintless (Li) mutant in cotton. J Hered 93:221–224PubMedCrossRefGoogle Scholar
  30. Kearney TH, Harrison CJ (1927) The inheritance of smoothness seeds in cotton. J Agric Res 35:193–217Google Scholar
  31. Kohel RJ (1972) Linkage tests in upland cotton, Gossypium hirsutum L. II. Crop Sci 12:66–69CrossRefGoogle Scholar
  32. Kohel RJ (1973) Genetic nomenclature in cotton. J Hered 64:291–295Google Scholar
  33. Kohel RJ, Yu JZ, Park YH, Lazo GR (2001) Molecular mapping and characterization of genes controlling fiber quality in cotton. Euphytica 121:163–172CrossRefGoogle Scholar
  34. Knapp SJ (1991) Using molecular markers to map multiple quantitative trait loci: model for backcross, recombinant inbred and double haploid progeny. Theor Appl Genet 81:333–338CrossRefGoogle Scholar
  35. Lacape JM, Nguyen TB, Thibivilliers S, Bojinov B, Courtois B, Cantrell RG, Burr B, Hau B (2003) A combined RFLP_SSR_AFLP map of tetraploid cotton based on a Gossypium hirsutum x G. barbadense backcross population. Genome 46:612–626PubMedCrossRefGoogle Scholar
  36. Lacape JM, Nguyen TB, Courtois B, Belot JL, Giband M, Gourlot JP, Gawryziak G, Roques S, Hau B (2005) QTL analysis of cotton fiber quality using multiple Gossypium hirsutum x Gossypium barbadense backcross generations. Crop Sci 45:123–140Google Scholar
  37. Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 134:943–951Google Scholar
  38. Lee JJ, Hassan OS, Gao W, Wei NE, Kohel RJ, Chen XY, Payton P, Sze SH, Stelly DM, Chen ZJ (2006) Developmental and gene expression analyses of a cotton naked seed mutant. Planta 223:418–432PubMedCrossRefGoogle Scholar
  39. Lehmann EL (1975) Nonparametrics. McGraw-Hill, New YorkGoogle Scholar
  40. Li XB, Fan XP, Wang XL, Cai L, Yang WC (2005) The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell 17:859–875PubMedCrossRefGoogle Scholar
  41. McCouch SR, Chen X, Panaud O, Temnykh S, Xu Y, Cho YG, Huang N, Ishii T, Blair M (1997) Microsatellite marker development, mapping applications in rice genetics and breeding. Plant Mol Biol 35:89–99PubMedCrossRefGoogle Scholar
  42. Mc Lendon CA (1972) Mendelian inheritance in cotton hybrids. Georgia Sta Bull No 99Google Scholar
  43. Musaev, JA, Abzalov MF (1972) Some questions concerning the inheritance of fuzzy in cotton seeds (G. hirsutum L.) Genetika 7–16 (in Russian)Google Scholar
  44. Musaev JA (1979) Genetic collection of cotton. Fan UzSSR (in Russian)Google Scholar
  45. Musaev JA, Abzalov MF, Almatov A, Sanamyan MF, Gubanova N, Nadjimov U (2000) Cotton genetics and genetic collection of isogenic, monosomic and translocation lines. Bulletins SCST of the republic of Uzbekistan (in Russian), p 28–39Google Scholar
  46. Nadarajan N, Rangasamy SR (1988) Inheritance of the fuzzless-lintless character in cotton (Gossypium hirsutum). Theor Appl Genet 75:728–730CrossRefGoogle Scholar
  47. Narbuth EV, Kohel RJ (1990) Inheritance and linkage analysis of a new fiber mutant in cotton. J Hered 81:131–133Google Scholar
  48. Nelson JC (1997) QGene: software for marker–based genomic analysis breeding. Molecular Breeding 3:293–245CrossRefGoogle Scholar
  49. Nguyen TB, Giband M, Brottier P, Risterucci AM, Lacape JM (2004) Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet 109:167–175PubMedCrossRefGoogle Scholar
  50. Nolte KD, Hendrix DL, Radin JW, Koch KE (1995) Sucrose synthase localization during initiation of seed development and trichome differentiation in cotton ovules. Plant Physiol 109:1285–1293PubMedGoogle Scholar
  51. Orford SJ, Timmis JN (1998) Specific expression of an expansin gene during elongation of cotton fibers. Biochim Biophys Acta 1398:342–346PubMedGoogle Scholar
  52. Paterson AH, Saranga Y, Menz M, Ziang CX (2003) QTL analysis of genotype X environment interactions affecting cotton fiber quality. Theor Appl Genet 106:384–396PubMedGoogle Scholar
  53. Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM (1996) Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci USA 93:12637–12642PubMedCrossRefGoogle Scholar
  54. Qureshi SN, Saha S, Kantety RV, Jenkins JN (2004) EST-SSR: a new class of genetic markers in cotton. J Cotton Sci 8:112–123Google Scholar
  55. Reddy OUK, Pepper AE, Abdurakhmonov IY, Saha S, Jenkins JN, Brooks TD, Bolek Y, El-Zik KM (2001) The identification of dinucleotide and trinucleotide microsatellite repeat loci from cotton G. hirsutum L. J Cotton Sci 5:103–113Google Scholar
  56. Richmond TR (1947) The genetics of certain factors responsible for lint quantity in American Upland cotton. Bull Tex Agric Sta vol 716Google Scholar
  57. Rong J, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW, Delmonte TA et al. (2004) A3347–locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166:389–417PubMedCrossRefGoogle Scholar
  58. Rong, J, Pierce GJ, Waghmare VN, Rogers CJ, Desai A, Chee PW, May OL, Gannaway JR, Wendel JF, Wilkins TA, Paterson AH (2005) Genetic mapping and comparative analysis of seven mutants related to seed fiber development in cotton. Theor Appl Genet DOI 10.1007/s00122–005–0041–0Google Scholar
  59. Ruan YL, Llewellyn DJ, Furbank RT (2001) The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell 13:47–63PubMedCrossRefGoogle Scholar
  60. Ruan YL, Llewellyn DJ, Furbank RT (2003) Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 15:952–964PubMedCrossRefGoogle Scholar
  61. Saha S, Jenkins JN, Wu J, McCarty JC, Gutierrez OA, Percy RG, Cantrell RG, Stelly DM (2006) Effects of chromosome-specific introgression in upland cotton on fiber and agronomic traits. Genetics 172(3):1927–38PubMedCrossRefGoogle Scholar
  62. Shen X, Guo W, Zhu X, Yuan Y, Yu JZ, Kohel RJ, Zhang T (2005) Molecular mapping of QTLs for fiber qualities in three diverse lines in Upland cotton using SSR markers. Mol Breed 15:169–181CrossRefGoogle Scholar
  63. Soller M, Genizi A, Brody T (1976) On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor Appl Genet 47:35–39CrossRefGoogle Scholar
  64. Stelly DM, Saha S, Raska DA, Jenkins JN Jr, McCarty JC, Gutiérrez OA (2005) Registration of 17 Upland (Gossypium hirsutum) Cotton germplasm lines disomic for different G. barbadense chromosome or arm substitutions. Crop Sci 45:2663–2665CrossRefGoogle Scholar
  65. Suo J, Liang X, Pu L, Zhang Y, Xue Y (2003) Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.). Biochim Biophys Acta 1630(1):25–34PubMedGoogle Scholar
  66. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277:1063–1066PubMedCrossRefGoogle Scholar
  67. Thadani KI (1923) Linkage relations in the cotton plant. Agric J India No 18Google Scholar
  68. Thadani KI (1925) Inheritance of certain characters in Gossypium. Agric J India vol 20Google Scholar
  69. Turley RB, Kloth RH (2002) Identification of a third fuzzless seed locus in Upland cotton (Gossypium hirsutum L.). J Hered 93:359–364PubMedCrossRefGoogle Scholar
  70. Van Ooijen JW (1999) LOD significance thresholds for QTL analysis in experimental populations of diploid species. Heredity 83:613–624PubMedCrossRefGoogle Scholar
  71. Van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2002) MapQTL@4.0, Software for the calculation of QTL positions of genetic maps. Plant Research International, Wageningen, The NetherlandsGoogle Scholar
  72. Ware JO (1929) Inheritance of linted percentage in cotton. J Am Soc Agron 21:876–894Google Scholar
  73. Ware JO, Benedict LN, Rolfe WH (1947) A recessive naked seed character in Upland cotton. J Hered 38:313–331PubMedGoogle Scholar
  74. Wilkins TA, Jernstedt JA (1999) Molecular genetics of developing cotton fibers. Food product press 231–269Google Scholar
  75. Wu Y, Llewellyn DJ, Dennis ES (2001) Gene discovery in cotton fiber initiation using EST and microarray approaches. Plant and animal genomes IX conference abstract P01_76.htmlGoogle Scholar
  76. Young DN (2000) Constructing a plant genetic linkage map with DNA markers. In: Philips RL, Vasil JK (eds) DNA-based Markers in plants. Kluwer Academic Publishers, Netherlands, pp 31–47Google Scholar
  77. Yu JZ, Kohel RJ, Dong J (2002) Development of integrative SSR markers from TM-1 BACs. In: Proceedings of beltwide cotton improvement conference, CDROM (2002) Altlanta, GeorgiaGoogle Scholar
  78. Yu JZ, Kohel RJ, Zhang H, Stelly DM, Xu Z, Dong J, Covaleda L, Lee M, Cui P, Lazo GR, Gupta P, Ding K (2004a) Toward an integrated physical and genetic map of the cultivated allotetraploid cotton genome. In: Plant and animal genome conference XII, W147. San Diego, CaliforniaGoogle Scholar
  79. Yu JZ, Kohel RJ, Cantrell RG, Jones D, Saha S, Tomkins J, Main D, Palmer M, Pepper AE, Stelly DM, Ulloa M, Scheffler J (2004b) Establishment of standardized cotton microsatellite database (CMD) panel. In: The proceedings of cotton beltwide conference. San Antonio, Texas, p 1129Google Scholar
  80. Zang T, Pan J (1991) Genetic analysis of fuzzless-lintless mutant in Gossypium hirsutum L. Jiangsu J Agric Sci 7:13–16Google Scholar
  81. Zhang J, Guo W, Zhang T (2002) Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L x Gossypium barbadense L.) with a haploid population. Theor Appl Genet 105:1166–117PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • I. Y. Abdurakhmonov
    • 1
  • Z. T. Buriev
    • 1
  • S. Saha
    • 2
  • A. E. Pepper
    • 3
  • J. A. Musaev
    • 1
  • A. Almatov
    • 1
  • S. E. Shermatov
    • 1
  • F. N. Kushanov
    • 1
  • G. T. Mavlonov
    • 1
  • U. K. Reddy
    • 4
  • J. Z. Yu
    • 5
  • J. N. Jenkins
    • 2
  • R. J. Kohel
    • 5
  • A. Abdukarimov
    • 1
  1. 1.Laboratory of Genetic Engineering and Biotechnology, Institute of Genetics and Plant Experimental BiologyAcademy of Sciences of UzbekistanYuqori YuzUzbekistan
  2. 2.USDA-ARSCrop Science Research Laboratory, Genetics and Precision AgricultureMississippi StateUSA
  3. 3.Department of BiologyTexas A&M UniversityCollege StationUSA
  4. 4.Department of BiologyWest Virginia State UniversityWVUSA
  5. 5.Crop Germplasm Research UnitCollege StationUSA

Personalised recommendations