Advertisement

Euphytica

, 155:235 | Cite as

Molecular cloning of Tulipa fosteriana rDNA and subsequent FISH analysis yields cytogenetic organization of 5S rDNA and 45S rDNA in T. gesneriana and T. fosteriana

  • Hitoshi Mizuochi
  • Agnieszka Marasek
  • Keiichi Okazaki
Article

Abstract

In this study, Tulipa fosteriana was found to contain 45S rDNA repeat units of 9.7 and 9.5 kb, in which at least 7 types of 45S rDNAs were identified by restriction site analysis. For 5S rDNA, repeat units ranging from 364 bp to 396 bp were identified. The diploid cultivars (2n = 2x = 24) ‘Christmas Dream’ and ‘Queen of Night,’ representing the horticultural group T. gesneriana, and ‘Red Emperor’, belonging to T. fosteriana, were compared cytogenetically using cloned 5S and 45S rDNAs. Fluorescence in situ hybridization (FISH) analysis identified many rDNA sites located on each chromosome in the diploid genomes. For example, we identified 71 sites of 5S rDNA and 10 sites of 45S rDNA in ‘Red Emperor’. Additionally, FISH analyses enabled construction of karyotypes for these cultivars. Karyotype comparison of T. gesneriana cultivars showed conservation of repetitive rDNA unit positioning. A clear difference in chromosome size and signal pattern was observed between T. gesneriana and T. fosteriana cultivars. Here we demonstrate the unique nature of the highly repeated 5S rDNA units in these Tulipa species and the usefulness of FISH karyotyping with cloned 5S and 45S rDNAs to clearly distinguish between chromosomes from T. gesneriana and T. fosteriana.

Keywords

Chromosome identification Fluorescence in situ hybridization Repetitive DNA Tulipa 

Notes

Acknowledgements

The authors are grateful to Dr. F. Takaiwa of the National Institute of Agrobiological Resources, Japan, for providing the rice 45S rDNA clone. This work was partially supported by the Japanese Society for the Promotion of Science (JSPS fellowship award to A.M., 2005–2007, No. P 05186).

References

  1. Abirached-Darmency M, Prado-Vivant E, Chelysheva L, Pouthier T (2005) Variation in rDNA locus number and position among legume species and detection of 2 linked rDNA. Genome 48:556–561PubMedCrossRefGoogle Scholar
  2. Ali HB, Meister A, Schubert I (2000) DNA content, rDNA loci, and DAPI bands reflect the phylogenetic distance between Lathyrus species. Genome 43:1027–1032PubMedCrossRefGoogle Scholar
  3. Appels R, Dvorak J (1982) The wheat ribosomal DNA spacer: its structure and variation among species. Theor Appl Genet 63:337–348CrossRefGoogle Scholar
  4. Appels R, Honeycutt RL (1986) rDNA: evolution over a billion years. In: Dutta SK (ed) DNA systematics.Vol. I, II. CRC Press Inc, Boca RatonGoogle Scholar
  5. Bachmann K (1992) Nuclear DNA markers in angiosperm taxonomy. Acta Bot Neerl 39:369–384Google Scholar
  6. Baum BR, Bailey LG, Belyayev A, Raskina O, Nevo E (2004) The utility of the nontranscribed spacer of the 5S rDNA units grouped into unit classes assigned to haplomes—a test on cultivated wheat and wheat progenitors. Genome 47:590–599PubMedCrossRefGoogle Scholar
  7. Bellarosa R, Delre V, Schirone B, Maggini F (1990) Ribosomal RNA genes in Quercus spp. (Fagaceae). Pl Syst Evol 172:127–139CrossRefGoogle Scholar
  8. Bennetzen JL, Kellogg EA (1997) Do plants have a one-way ticket to genomic obesity? Plant Cell 9:1509–1514PubMedCrossRefGoogle Scholar
  9. Blakey DH, Vosa CG (1982) Heterochromatin and chromosome variation in cultivated species of Tulipa subg. Leiostemones (Liliaceae). Plant Syst Evol 139:163–178CrossRefGoogle Scholar
  10. Bryan EB (2002) Bulbs. Timber Press, Inc, Portland, Oregon, pp 454–462Google Scholar
  11. Dana KJ, Workman R, Coryell V, Keim P (1996) 5S rRNA genes in tribe Phaseoleae: array size, number and dynamics. Genome 39:445–455Google Scholar
  12. De Melo NF, Guerra M (2003) Variability of the 5S rDNA sites in Passiflora L. species with distinct base chromosome numbers. Ann Bot 92:309–316PubMedCrossRefGoogle Scholar
  13. Filion WG (1974) Differential giemsa staining in plants. I. Banding patterns in three cultivars of Tulipa. Chromosoma 49:51–60CrossRefGoogle Scholar
  14. Golczyk H, Hasterok R, Joachimiak AJ (2005) FISH-aimed karyotyping and characterization of Renner complexes in permanent heterozygote Rhoeo spathacea. Genome 48:145–153PubMedCrossRefGoogle Scholar
  15. Hasterok R, Jenkins G, Longdon T, Jones RN, Maluszynska J (2001) Ribosomal DNA is an effective marker of Brassica chromosomes. Theor Appl Genet 103:486–490CrossRefGoogle Scholar
  16. Hasterok R, Draper J, Jenkins G (2004) Laying the cytotaxonomic foundations of a new model grass, Brachypodium distachyon (L.) Beauv. Chromosome Res 12:397–403PubMedCrossRefGoogle Scholar
  17. Hasterok R, Wolny E, Kulak S, Zdziechowicz A, Maluszynska J, Heneen WK (2005) Molecular cytogenetic analysis of Brassica rapa-Brassica oleracea var. alboglabra monosomic addition lines. Theor Appl Genet 111:196–205PubMedCrossRefGoogle Scholar
  18. Jorgensen RA, Cuellar RE, Thompson WT, Kavanagh TA (1987) Structure and variation in ribosomal RNA genes of pea. Plant Mol Biol 8:3–12CrossRefGoogle Scholar
  19. Kamstra SA, Kuipers AGJ, de Jeu MJ, Ramanna MS, Jacobsen E (1997) Physical localisation of repetitive DNA sequences in Alstroemeria: karyotyping of two species with species-specific and ribosomal DNA. Genome 40:652–658PubMedGoogle Scholar
  20. Kato A (1997) An improved method for chromosome counting in maize. Biotech Histochem 72:249–252PubMedGoogle Scholar
  21. Kho YO, Baer J (1971) Incompatibility problems in species crosses of Tulips. Euphytica 20:30–35CrossRefGoogle Scholar
  22. Killingback S (1990) Tulips—an illustrated identifier and guide to their cultivation. Apple Press, London, pp 9–13Google Scholar
  23. Kitamura S, Inoue M, Ohmido N, Fukui K (2000) Quantitative chromosome maps and rDNA localization in the T subgenome of Nicotiana tabacum L. and its putative progenitors. Theor Appl Genet 101:1180–1188CrossRefGoogle Scholar
  24. Learn GH, Schaal BA (1987) Population subdivision for ribosomal DNA repeat variants in Clematis fremontii. Evolution 41:433–438CrossRefGoogle Scholar
  25. Leitch IJ, Heslop-Harrison JS (1993) Physical mapping for four sites of 5S rDNA sequences and one site of the alpha-amylase gene in barley (Hordeum vulgarae). Genome 36:517–523PubMedGoogle Scholar
  26. Levan AK, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position of chromosomes. Hereditas 52:201–220CrossRefGoogle Scholar
  27. Lim KB, Chung JD, Van Kronenburg BCE, Ramanna MS, de Jong J H, Van Tuyl J (2000) Introgression of Lilium rubellum Baker chromosomes into L. longiflorum Thunb.: a genome painting study of the F1 hybrid, BC1 and BC2 progenies. Chromosome Res 8:119–125PubMedCrossRefGoogle Scholar
  28. Maluszynska J, Hasterok R (2005) Identification of individual chromosomes and parental genomes in Brassica juncea using GISH and FISH. Cytogenet Genome Res 109:310–314PubMedCrossRefGoogle Scholar
  29. Marasek A, Hasterok R, Wiejacha K, Orlikowska T (2004) Determination by GISH and FISH of hybrid status in Lilium. Hereditas 140:1–7PubMedCrossRefGoogle Scholar
  30. Marasek A, Mizuochi H, Okazaki K (2006) The origin of Darwin hybrid tulips analyzed by flow cytometry, karyotype analyses and genomic in situ hybridization. Euphytica 151:279–290CrossRefGoogle Scholar
  31. Moscone EA, Klein F, Lambrou M, Fuchs J, Schweizer D (1999) Quantitative karyotyping and dual-color FISH mapping of 5S and 18S-25S rDNA probes in the cultivated Phaseolus species (Leguminosae). Genome 42:1224–1233PubMedCrossRefGoogle Scholar
  32. Murata M, Heslop-Harrison JS, Motoyoshi F (1997) Physical mapping of the 5S ribosomal rRNA genes in Arabidopsis thaliana by multicolour fluorescence in situ hybridization with cosmid clones. Plant J 12:31–37PubMedCrossRefGoogle Scholar
  33. Murray MG, Thompson WF (1980) Rapid isolation of high-molecular-weight plant DNA. Nucleic Acid Res 8:4321–4325PubMedCrossRefGoogle Scholar
  34. Oono K, Sugiura M (1980) Heterogenity of the ribosomal RNA gene clusters in rice. Chromosoma 76:85–89CrossRefGoogle Scholar
  35. Ran Y, Hammett KRW, Murray BG (2001) Phylogenetic analysis and karyotype evolution in the genus Clivia (Amaryllidaceae). Ann Bot 87:823–830CrossRefGoogle Scholar
  36. Rogers SO, Honda S, Bendich AJ (1986) Variation in the ribosomal RNA genes among individuals of Vicia faba. Plant Mol Biol 6:339–345CrossRefGoogle Scholar
  37. Sadder MT, Weber G (2001) Karyotype of Maize (Zea mays L.) mitotic metaphase chromosomes as revealed by fluorescence in situ hybridization (FISH) with cytogenetic DNA markers. Plant Mol Biol Rep 19:117–123Google Scholar
  38. Sayama H, Moug T, Nishimura Y (1982) Cytological study in Tulipa gesneriana and T. fosteriana. Jpn J Breed 32:26–34Google Scholar
  39. Schaal BA, Leverich WJ, Nieto-Sotelo J (1987) Ribosomal DNA variation in the native plant Phlox divaricata. Mol Biol Evol 4:611–621Google Scholar
  40. Schrader O, Budahn H, Ahne R (2000) Detection of 5S and 25S rRNA genes in Sinapis alba, Raphanus sativus and Brassica napus by double fluorescence in situ hybridisation. Theor Appl Genet 100:665–669CrossRefGoogle Scholar
  41. Schubert I, Wobus U (1985) In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92:143–148CrossRefGoogle Scholar
  42. Siegel A, Kolacz K (1983) Heterogeneity in pumpkin ribosomal DNA. Plant Physiol 72:166–171PubMedCrossRefGoogle Scholar
  43. Shibata F, Hizume M (2002) Evolution of 5S rDNA units and their chromosomal localization in Allium cepa and Allium schoenoprasum revealed by microdissection and FISH. Theor Appl Genet 105:167–172PubMedCrossRefGoogle Scholar
  44. Snowdon RJ, Friedt W, Köhler A, Köhler W (2000) Molecular localization and characterization of 5S and 25S rDNA loci for chromosome identification in oilseed rape (Brassica napus L.). Ann Bot 86:201–294CrossRefGoogle Scholar
  45. Specht T, Szymanski M, Barciszewska MZ, Barciszewski J, Erdmann V (1997) Compilation of 5S rRNA and 5S rRNA gene sequences. Nucleic Acid Res 25:96–97PubMedCrossRefGoogle Scholar
  46. Taketa S, Ando H, Takata K, von Bothmer R (2001) Physical locations of 5S and 18S–25S rDNA in Asian and American diploid Hordeum species with the I genome. Heredity 86:522–530PubMedCrossRefGoogle Scholar
  47. Udovicic F, McFadden GI, Ladiges PY (1995) Phylogeny of eucalyptus and angophora based on 5S rDNA spacer sequence data. Mol Phyl Evol 4:247–256CrossRefGoogle Scholar
  48. Van Eijk JP, Van Raamsdonk LWD, Eikelboom W, Bino RJ (1991) Interspecific crosses between Tulipa gesneriana cultivars and wild Tulipa species: a survey. Sex Plant Reprod 4:1–5CrossRefGoogle Scholar
  49. Van Raamsdonk LWD, De Vries T (1995) Species relationships and taxonomy in Tulipa subg. Tulipa (Liliaceae). Plant Syst Evol 195:13–44CrossRefGoogle Scholar
  50. Van Tuyl JM, Van Creij MGM (2005) Tulipa gesneriana and Tulipa hybrids. In: flower breeding and genetics: issues, challenges and opportunities for 21st century, Springer Verlag, Chapter 23, pp 613–637Google Scholar
  51. Waldron J, Dunsmuir P, Bedbrook J (1983) Characterization of the rDNA repeat units in the Mitchell Petunia genome. Plant Mol Biol 2:57–65CrossRefGoogle Scholar
  52. Zhang D, Sang T (1999) Physical mapping of ribosomal RNA genes in Peonies (Paeonia, Paeoniaceae) by fluorescent in situ hybridization: implications for phylogeny and concerted evolution. Am J Bot 86:735–740PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Hitoshi Mizuochi
    • 1
  • Agnieszka Marasek
    • 1
    • 2
  • Keiichi Okazaki
    • 1
  1. 1.Faculty of Agriculture, Laboratory of Plant BreedingNiigata UniversityNiigataJapan
  2. 2.Department of Physiology and BiochemistryResearch Institute of Pomology and FloricultureSkierniewicePoland

Personalised recommendations