Euphytica

, Volume 158, Issue 3, pp 295–303 | Cite as

Molecular barley breeding

  • S. J. Rae
  • M. Macaulay
  • L. Ramsay
  • F. Leigh
  • D. Matthews
  • D. M. O’Sullivan
  • P. Donini
  • P. C. Morris
  • W. Powell
  • D. F. Marshall
  • R. Waugh
  • W. T. B. Thomas
Original Article

Abstract

Breeding progress in barley yield in the UK is being sustained at a rate in the order of 1% per annum against a background of declining seed sales. Commercial barley breeders are largely concentrating upon the elite local gene pool but with genotypic evidence suggesting that there is still considerable variation between current recommended cultivars, even those produced as half-sibs by the same breeder. Marker Assisted Selection (MAS) protocols could be substituted for conventional selection for a number of major-gene targets but, in the majority of cases, conventional selection is more resource efficient. Results from current QTL mapping studies have not yet identified sufficiently robust and validated targets for UK barley breeders to adopt MAS to assist in the selection of complex traits such as yield and malting quality. Results from multiple population mapping amongst the elite gene pool being utilised by breeders and from association studies of elite germplasm tested as part of the UK recommended list trial process do, however, show some promise.

Keywords

Barley Markers Major genes QTLs Marker assisted selection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison MJ, Cowe IA, Borzucki R, Bruce F, McHale R (1979) Milling energy of barley. J Inst Brewing 85:262–264Google Scholar
  2. Ayoub M, Armstrong E, Bridger G, Fortin MG, Mather DE (2003) Marker-based selection in barley for a QTL region affecting alpha-amylase activity of malt. Crop Sci 43:556–561CrossRefGoogle Scholar
  3. Bauer E, Graner A (1995) Basic and applied aspects of the genetic analysis of the ym4 virus resistance locus in barley. Agronomie 15:469–473CrossRefGoogle Scholar
  4. Bezant JH, Laurie DA, Pratchett N, Chojecki J, Kearsey MJ (1997a) Mapping of QTL controlling NIR predicted hot water extract and grain nitrogen content in a spring barley cross using marker-regression. Plant Breed 116:141–145CrossRefGoogle Scholar
  5. Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M (1996) Marker regression mapping of QTL controlling flowering time and plant height in a spring barley (Hordeum vulgare L.) cross. Heredity 77:64–73CrossRefGoogle Scholar
  6. Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M (1997b) Mapping QTL controlling yield and yield components in a spring barley (Hordeum vulgare L.) cross using marker regression. Molecular breed 3:29–38CrossRefGoogle Scholar
  7. Casas AM, Moralejo MA, Yahiaoui S, Ciudad F, Codesal P, Montoya JL, Molina-Cano JL, Gracia MP, Lasa JM, Igartua E (2005) Marker-trait associations in barley. In Integrated quantitative and molecular genetics in plant breeding. Abstracts of 12th meeting of the Eucarpia section of biometrics in plant breeding. pp 91–92Google Scholar
  8. Chloupek O, Forster BP, Thomas WTB (2005) The effect of semi-dwarf genes on root system size in field grown barley. Theor Appl Genet (in press)Google Scholar
  9. Choo TM, Reinbergs E (1979) Doubled haploids for estimating genetic variances in presence of linkage and gene association. Theor Appl Genet 55:129–132CrossRefGoogle Scholar
  10. Clancy JA, Han F, Ullrich SE (2003) Comparative mapping of beta-amylase activity QTLs among three barley crosses. Crop Sci 43:1043–1052CrossRefGoogle Scholar
  11. Forster BP, Thomas WTB (2003) Doubled haploids in genetic mapping and genomics. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I Dordrecht (eds) Doubled haploid production in crop plants. Kluwer, The Netherlands, pp 367–390Google Scholar
  12. Graner A, Bauer E (1993) Rflp mapping of the Ym4 virus-resistance gene in Barley. Theor Appl Genet 86:689–693CrossRefGoogle Scholar
  13. Graner A, Streng S, Kellermann A, Schiemann A, Bauer E, Waugh R, Pellio B, Ordon F (1999) Molecular mapping and genetic fine-structure of the rym5 locus encoding resistance to different strains of the Barley Yellow Mosaic Virus Complex. Theor Appl Genet 98:285–290CrossRefGoogle Scholar
  14. Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak JD, Rasmusson DC, Sorrells M, Ullrich SE, Wesenberg D (1993) Quantitative trait locus effects and environmental interaction in a sample of North American barley germ plasm. Theor Appl Genet 87:392–401CrossRefGoogle Scholar
  15. Heun M (1992) Mapping quantitative powdery mildew resistance of Barley using a restriction-fragment-length-polymorphism. Map Genome 35:1019–1025Google Scholar
  16. Kihara M, Kaneko T, Ito K (1998) Genetic variation of beta-amylase thermostability among varieties of barley, Hordeum vulgare L., and relation to malting quality. Plant breed 117:425–428CrossRefGoogle Scholar
  17. Kraakman ATW, Niks RE, Van den Berg PMMM, Stam P, van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genet 168:435–446CrossRefGoogle Scholar
  18. Langridge P, Barr AR (2003) Better barley faster: the role of marker assisted selection - Preface. Aust J Agricultural Res 54:1–4CrossRefGoogle Scholar
  19. Macaulay M, Ramsay L, Russell J, Marshall D, Waugh R, Thomas W (2004) Molecular markers to analyse breeding progress in barley. Aspects of Appl Biol 72:139–146Google Scholar
  20. Meyer RC, Lawrence PE, Young GR, Thomas WTB, Powell W (2000) SSRs and SNPs – diagnostic tools for Barley yellow mosaic virus. In: logue S (ed) Barley genetics VIII, proceedings of the 8th international Barley genetics symposium, vol II. Dept Plant Sciences, Adelaide University, Adelaide, Australia, pp 144–146Google Scholar
  21. Meyer RC, Swanston JS, Brosnan J, Field M, Waugh R, Powell W, Thomas WTB (2004) Can anonymous QTLs be introgressed successfully into another genetic background? results from a Barley malting quality parameter. In: Spunar J, Janikova J Kromeriz (eds) Barley Genetics IX, vol II. Agricultural Research Institute, Czech Republic, pp 461–467Google Scholar
  22. Ordon F, Werner K, Pellio B, Schiemann A, Friedt W, Graner A (2003) Molecular breeding for resistance to soil-borne viruses (BaMMV, BaYMV, BaYMV-2) of barley (Hordeum vulgare L.). Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz-Journal of Plant Diseases and Protection 110:287–295Google Scholar
  23. Rae SJ, Keith R, Leigh F, Mackie A, Matthews D, Felix G, Morris PC, Donini P, Thomas WTB (2004) Small mapping crosses and their use to establish a broad based QTL map for barley. In: Spunar J, Janikova J Kromeriz (eds) Barley Genetics IX, vol II. Agricultural Research Institute, Czech Republic, pp 195–200Google Scholar
  24. Rajasekaran P, Thomas WTB, Wilson A, Lawrence P, Young G, Ellis RP (2003) Genetic control of grain damage in a spring barley mapping population. Plant breed 123:17–23CrossRefGoogle Scholar
  25. Rasmusson DC, Phillips RL (1997) Review and interpretation: Plant breeding progresss and genetic diversity from de novo variation and elevated epistasis. Crop Sci 37(2):303–309CrossRefGoogle Scholar
  26. Romagosa I, Han F, Ullrich SE, Hayes PM, Wesenberg DM (1999) Verification of yield QTL through realized molecular marker- assisted selection responses in a barley cross. Molecular breed 5:143–152CrossRefGoogle Scholar
  27. Pellio B, Streng S, Bauer E, Stein N, Perovic D, Schiemann A, Friedt W, Ordon F, Graner A (2005) High-resolution mapping of the Rym4/Rym5 locus conferring resistance to the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2) in barley (Hordeum vulgare ssp. vulgare L). Theor Appl Genet 110:283–293PubMedCrossRefGoogle Scholar
  28. Stein N, Perovic D, Kumlehn J, Pellio B, Stracke S, Streng S, Ordon F, Graner A (2005) The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant J 42:912–922PubMedCrossRefGoogle Scholar
  29. Swanston JS, Thomas WTB, Powell W, Young G, Lawrence P, Ramsay L, Waugh R (1999) Using molecular markers to determine barleys most suitable for malt whisky distilling. Molecular breed 5(2):103–109CrossRefGoogle Scholar
  30. Thomas WTB (2003) Prospects for molecular breeding of barley. Ann Appl Biol 142:1–12CrossRefGoogle Scholar
  31. Thomas WTB, Baird E, Fuller JD, Lawrence P, Young GR, Russell J, Ramsay L, Waugh R, Powell W (1998) Identification of a QTL decreasing yield in barley linked to Mlo powdery mildew resistance. Molecular breed 4:381–393CrossRefGoogle Scholar
  32. Thomas WTB, Powell W, Swanston JS, Ellis RP, Chalmers KJ, Barua UM, Jack P, Lea V, Forster BP, Waugh R, Smith DB (1996) Quantitative trait loci for germination and malting quality characters in a spring barley cross. Crop Sci 36:265–273CrossRefGoogle Scholar
  33. Thomas WTB, Powell W, Waugh R, Chalmers KJ, Barua UM, Jack P, Lea V, Forster BP, Swanston JS, Ellis RP, Hanson PR (1995) Detection of quantitative trait loci for agronomic, yield, grain and disease characters in spring barley (Hordeum vulgare L.). Theor Appl Genet 91:1037–1047CrossRefGoogle Scholar
  34. Utz HF, Melchinger AE (1996) PLABQTL: a program for composite interval mapping of QTL. J Agricultural Genomics 2Google Scholar
  35. Weyen J, Bauer E, Graner A, Friedt W, Ordon F (1996) RAPD-mapping of the distal portion of chromosome 3 of barley, including the BaMMV/BaYMV resistance gene ym4. Plant breed 115:285–287CrossRefGoogle Scholar
  36. Wicker T, Zimmermann W, Perovic D, Paterson AH, Ganal M, Graner A, Stein N (2005) A detailed look at 7 million years of genome evolution in a 439 kb contiguous sequence at the barley Hv-eIF4E locus: recombination, rearrangements and repeats. Plant J 41:184–194PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • S. J. Rae
    • 1
  • M. Macaulay
    • 1
  • L. Ramsay
    • 1
  • F. Leigh
    • 2
  • D. Matthews
    • 2
  • D. M. O’Sullivan
    • 2
  • P. Donini
    • 2
  • P. C. Morris
    • 3
  • W. Powell
    • 1
  • D. F. Marshall
    • 1
  • R. Waugh
    • 1
  • W. T. B. Thomas
    • 1
  1. 1.Scottish Crop Research InstituteInvergowrieDundeeUK
  2. 2.National Institute of Agricultural BotanyCambridgeUK
  3. 3.School of Life SciencesHeriot-Watt University, RiccartonEdinburghUK

Personalised recommendations