, Volume 148, Issue 1–2, pp 87–96

The relationship of propagule pressure to invasion potential in plants

  • M. Alejandra Martínez-Ghersa
  • Claudio M. Ghersa


The invasive potential of a species can be assessed by propagule pressure, which measures the chances for propagules of a species to find a suitable habitat for establishment and reproduction. Seeds, fruits, and vegetative structures that contribute to the propagule pressure are morphologically, physiologically and genetically different from one another, thus each kind should have a specific way of contributing to a successful invasion. In this paper we review plant traits that contribute to the propagule pressure. Seed production provides an estimate of the potential multiplication rate of the weed. However, it is gap-sensing mechanisms of seeds based on dormancy termination and germination requirements, which significantly contribute to the naturalization and invasion processes assuring a successful seedling establishment in environments of high competition. Dispersal of propagules reduces competition, mating with a sibling, and subsequent inbreeding depression, and increases colonization opportunities and range of expansion. Some of those benefits can be achieved in a population by existence of dormancy mechanisms and thus, the existence of a seed bank. Finally, vegetative propagation may ensure expansion of local populations when seedling establishment is low. Broadening the scope of traits that are considered in the breeding programs aimed at commercial production of plant propagules, to include those related to propagule pressure, is essential for adequate evaluation of invasive potential.

Key Words

invasive species propagule pressure seeds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ares, J., A. Soriano and B.A. de Eilberg, 1970. Mecanismos de invasion del pasto puna (Stipa brachychaeta Godr). I. Caracteristicas de los diseminulos de la maleza. Revista de Investigaciones Agropecuarias, INTA 7: 277–287.Google Scholar
  2. Ballaré, C.L., A.L. Scopel, C.M. Ghersa & R.A. Sanchez, 1987. The demography of Datura ferox (L.) in soybean crops. Weed Res. 27: 91–102.Google Scholar
  3. Ballaré, C.L., A.L. Scopel, C.M. Ghersa & R.A. Sanchez, 1988. The rate of Datura ferox seeds in the soil as affected by cultivation, depth of burial and degree of maturity. Ann Appl Biol 112: 337–345.Google Scholar
  4. Barret, S.C.H., 1982. Genetic variation in weeds. In: R. Charudattan & H. Walker (Eds.), Biological control of weeds with plant pathogens, pp. 73–88. John Wiley, New York.Google Scholar
  5. Barrett, S.C.H., 1983. Crop mimicry in weeds. Econ Bot 37: 255–282.Google Scholar
  6. Baskin, J.M. & C.C. Baskin, 1980. Role of seed reserves in the persistence of a local population of Sedum pulchellum A direct field observation. Bull Torrey Bot Club 107: 429–430.CrossRefGoogle Scholar
  7. Baskin, C.C. & J.M. Baskin, 1998. Seeds. Ecology, Biogeography and Evolution of dormancy and germination. Academic Press, New York.Google Scholar
  8. Bekker, R.M., J.P. Bakker, U. Grandin, R. Kalamees, P. Milberg, P. Poschlod, K. Thompson & J.H. Willems, 1998. Seed size, shape and vertical distribution in the soil: Indicators of seed longevity. Funct Ecol 12: 834–842.CrossRefGoogle Scholar
  9. Benech Arnold, R., C.M. Ghersa, R.A. Sánchez & A. García Fernández, 1988. The role of fluctuating temperatures in germination and establishment of Sorghum halepense (L.) Pers. I. Inhibition of germination under leaf canopies. Funct. Ecol 2: 311–318.Google Scholar
  10. Benech Arnold, R.L., R.A. Sánchez, F. Forcella, B. Kruk & C.M. Ghersa, 2000. Environmental control of dormancy in weed soil seed banks. Field Crops Res 67: 105–122.CrossRefGoogle Scholar
  11. Booth, B.D., S.D. Murphy & C.J. Swanton, 2003. Weed Ecology in Natural and Agricultural Systems. CABI Publishing, Cambridge, MA, pp. 81–101.Google Scholar
  12. Botto, J.F., R.A. Sanchez & J.J. Casal, 1998. Burial conditions affect the light responses of Datura ferox seeds. Seed Sci Res 8: 423–429.Google Scholar
  13. Brown, J.S. & D.L. Venable, 1986. Evolutionary ecology of seed bank annuals in temporally varying environments. Am Nat 127: 31–47.CrossRefGoogle Scholar
  14. Caswell, H., R. Lensink & M.G. Neubert, 2003. Demography and dispersal: Life table response experiments for invasion speed. Ecol 84: 1968–1978.Google Scholar
  15. Cavers, P.B. & D.L. Benoit, 1989. Seed banks in arable lands. In: M.A. Leck, V.T. Parker & R.L. Simpson (Eds.), Ecology of soil seed banks, pp. 309–328. Academic Press, San Diego.Google Scholar
  16. Corlett, R.T. & B.C.H. Hau, 2000. Seed dispersal and forest restoration. In: S Elliott, J. Kerby, D. Blakesley, K. Hardwick, K. Woods & V. Anusarnsunthorn (Eds.), Forest Restoration for Wildlife Conservation, pp. 317–325. International Tropical Timber Organization and Forest Restoration Research, Chiang Mai University, Thailand.Google Scholar
  17. Cousens, R. & M. Mortimer, 1995. Dynamics of Weed Populations. Cambridge University Press.Google Scholar
  18. Doucet, C. & P.B. Cavers, 1997. Induced dormancy and colour polymorphism in seeds of the bull thistle (Cirsium vulgare (Savi) Ten. Seed Sci Res 7: 399–407.Google Scholar
  19. Evans, R.A., J.A. Young & R. Hawkes, 1990. Germination characteristics of Italian thistle (Carduus pycnocephalus) and slender flower thistle (Carduus tenuiflorus). Weed Sci 27: 327–332.Google Scholar
  20. Faure, N., H. Serieys & A. Berville, 2002. Potential gene flow from cultivated sunflower to volunteer wild Helianthus species in Europe. Agric Ecosys Environ 89: 181–190.CrossRefGoogle Scholar
  21. Fenner, M. 1985. Seed Ecology. Chapman & Hall, London.Google Scholar
  22. Fernandez-Quintanilla, C., J. Gonzalez-Andujar & A. Appleby, 1990. Characterization of the germination and emergence responses to temperature and soil moisture of Avena fatua and Avena sterilis. Weed Res 30: 289–295.Google Scholar
  23. Forcella, F., J.T. Wood & S.P. Dillon, 1986. Characteristics distinguishing invasive weeds within Echium (Bugloss). Weed Res 26: 351–364.Google Scholar
  24. Ghersa, C.M. & M.L. Roush, 1993. Searching for solutions to weed problems. Do we study competition or dispersion? Bioscience 43: 104–109.CrossRefGoogle Scholar
  25. Ghersa, C.M. & R.J.C. León, 1999 Successional changes in the agroecosystems of the Rolling Pampas. In: L.R. Walker (Ed.), Ecosystems of disturbed ground. Chapter 20, pp. 487–502. Elsevier, Amsterdam.Google Scholar
  26. Ghersa, C.M., M.A. Martínez-Ghersa & R.L. Benech Arnol, 1997. Seed dormancy implications for grain and forage production. J Prod Agric 10: 111–117.Google Scholar
  27. Ghersa, C.M., E.H. Satorre, R.L. Benech Arnold & M.A. Martínez-Ghersa, 2000. Advances in weed management strategies. Field Crops Res 67: 95–104.CrossRefGoogle Scholar
  28. Gray, A.J., M.J. Crawley & P.J. Edwards, 1987. Colonization, succession and stability.: The 26th Symposium of the British Ecological Society, London.Google Scholar
  29. Grime, J.P., 1989. Seed banks in ecological perspective. In: M.A. Leck, V.T. Parker & R.L. Simpson (Eds.), Ecology of Soil Seed Banks, pp. 90–105. Academic Press, San Diego, CA.Google Scholar
  30. Guglielmini, A.C. & E.H. Satorre, 2002. Shading effects on spatial growth and biomass partitioning of Cynodon dactylon. Weed Res 42: 123–134.CrossRefGoogle Scholar
  31. Gulden, R.H., S.J. Shirtliffe & T.A. Gordon, 2003. Secondary seed dormancy prolongs persistence of volunteer canola in western Canada. Weed Sci 51: 904–913.Google Scholar
  32. Harlan, J.R., 1982. Relationships between weeds and crops. In: W. Holzner & M. Numata (Eds.), Biology and Ecology of Weeds, pp. 91–96.W. Junk, The Hague.Google Scholar
  33. Harper, J.L., J.T. Williams & G.R. Sagar, 1965. The behaviour of seeds in soil. The heterogeneity of soil surfaces and its role in determining the establishment of plant from seed. J Ecol 53: 273–286.Google Scholar
  34. Harper, J.L., 1977. Population Biology of Plants. Academic Press, London.Google Scholar
  35. Harvey, S.J. & F. Forcella, 1993. Vernal seedling emergence model for common lambsquarters (Chenopodium album). Weed Sci 41: 309–316.Google Scholar
  36. Holm, L., D.L. Plucknett, J.V. Pancho & J.P. Herberger, 1977. A Geographical Atlas of World Weeds. John Wiley & Sons, New York.Google Scholar
  37. Holzner, W. & M. Numata, 1982. Biology and Ecology of Weeds. Dr. W. Junk Publishers, The Hague.Google Scholar
  38. Insausti, P. & A. Soriano, 1982. Comportamiento de las semillas de Ambrosia tenuifolia en un pastizal de la Depresión del Salado. Rev Fac Agron, Universidad de Buenos Aires 3: 75–80.Google Scholar
  39. Insausti, P. & A. Soriano, 1987. Efecto del anegamiento prolongado en un pastizal de la Depresión del Salado: Dinámica del pastizal en conjunto y de Ambrosia tenuifolia. Darwiniana 28: 397–403.Google Scholar
  40. Insausti, P., A. Soriano & R.A. Sanchez, 1995. Effects of fllod-influenced factors on seed gemination of Ambrosia tenuifolia. Oecol (Berlin) 103: 127–132.CrossRefGoogle Scholar
  41. Jana, S. & K.M. Thai, 1987. Patterns of changes of dormant genotypes in Avena fatua populations under different agricultural conditions. Can J Bot 65: 1741–1745.Google Scholar
  42. Johnstone, I.M., 1986. Plant invasion windows: A time-based classification of invasion potential. Biol Rev 61: 369–394.Google Scholar
  43. Kowarik, I., 1995. Clonal growth in Ailanthus altissima on a natural site in West Virginia. J Veg Sci 6: 853–856.CrossRefGoogle Scholar
  44. Lesko, G.L. & R.B. Walker, 1969. Effect of seawater on germination in two Pacific atoll beach species. Ecol 50: 730–734.CrossRefGoogle Scholar
  45. Martínez-Ghersa, M.A., C.M. Ghersa & E.H. Satorre, 2000a. Coevolution of agricultural systems and their weed companions: Implications for research. Field Crops Res 67: 181–190.CrossRefGoogle Scholar
  46. new Martínez-Ghersa, M.A., C.M. Ghersa, R.L. Benech Arnold, R. Mac Donough & R.A. Sanchez, 2000b. Adaptive traits regulating dormancy and germination of invasive species. Plant Species Biol 15: 127–137.CrossRefGoogle Scholar
  47. Mazer, S.J. & D.E. Lowry, 2003. Environmental, genetic, and seed mass effects on winged seed production in the heteromorphic Spergularia marina (Caryophyllaceae). Funct Ecol 17: 637–650.CrossRefGoogle Scholar
  48. Moreira, I., 1975. Propagacao por semente do Cynodon dactylon (L.) Pers. Anais do Instituto Superior de Agronomia 35: 95–112.Google Scholar
  49. Muller, R.N., 1978. The phenology, growth, and ecosystem dynamics of Erythronium americanum in the Northern hardwood forest. Ecol Mon 48: 1–20.CrossRefGoogle Scholar
  50. Nathan, R. & C. Muller-Landau, 2000. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Tree 15: 278–285.PubMedGoogle Scholar
  51. Nault, A. & D. Gagnon, 1993. Ramet demography of Allium tricoccum, a spring ephemeral, perennial forest herb. J Ecol 81: 101–119.Google Scholar
  52. Neubert, M.G. & H. Caswell, 2000. Demography and dispersal: Calculation and sensitivity analysis of invasion speed for structured populations. Ecol 81: 1613–1628.CrossRefGoogle Scholar
  53. Parker, M.A., 2001. Mutualism as a constraint on invasion success for legumes and rhizobia. Biodiv Distr 7: 125–136.CrossRefGoogle Scholar
  54. Peart, M.H., 1984. The effects of morphology, orientation and position of grass diaspores on seedling survival. J Ecol 72: 437–453.Google Scholar
  55. Pijl van der, L., 1982. Principles of dispersal in higher plants. 215 pp. Springer-Verlag New York.Google Scholar
  56. Radosevich, S.R., J.S. Holt & C.M. Ghersa, 1997. Weed Ecology. Implications for Management. John Wiley and Sons. New York, 573 pp.Google Scholar
  57. Rejmanek, M., 2000. Invasive plants: Approaches and predictions. Austral Ecol 25: 497–506.CrossRefGoogle Scholar
  58. Rejmanek, M. & J.M. Randal, 1994. Invasive alien plants in California: 1993 summary and comparison with other areas in North America. Madronio 41: 161–177.Google Scholar
  59. Rejmanek, M. & D.M. Richardson, 1996. What attributes make some plant species more invasive? Ecol 77: 1655–1661.CrossRefGoogle Scholar
  60. Richardson, D.M., P. Pysek, M. Rejmanek, M.G. Barbour, F.D. Panetta & C.J. West, 2000. Naturalization and invasion of alien plants: concepts and definitions. Biodiv Distr 6: 93–107.CrossRefGoogle Scholar
  61. Satorre, E.H., C.M. Ghersa & A.M. Pataro, 1985. Prediction of Sorghum halepense (L.) Pers. Rhizome sprout emergence in relation to air temperature. Weed Res 25: 103–109.Google Scholar
  62. Sauer, J.D., 1988. Plant migration. The dynamics of geographic patterning in seed plant species. University of California Press, Berkeley.Google Scholar
  63. Scopel, A.L., C.L. Ballaré & C.M. Ghersa, 1988. The role of seed reproduction in the population ecology of Sorghum halepense (L.) Pers. in maize crops. J Appl Ecol 25: 951–962.Google Scholar
  64. Scopel, A.L., C.L. Ballare & R.A. Sanchez, 1991. Induction of extreme light sensitivity in buried weed seeds and its role in the perception of soil cultivations. Plant, Cell, Environ 14: 501–508.CrossRefGoogle Scholar
  65. Scursoni, J., R.L. Benech Arnold & H. Hirchoren, 1999. Demography of wild oat in barley crops: Effect of crop. Sowing rate and herbicide treatment. Agron J 91: 478–485.CrossRefGoogle Scholar
  66. Simpson, G.M., 1990. Timing in dormancy. In: G.M. Simpson (Ed.), Seed Dormancy in Grasses, pp. 195–231. Cambridge University Press, Cambridge.Google Scholar
  67. Soons, M.B. & G.W. Heil, 2002. Reduced colonization in fragmented populations of wind-dispersed grasslands forbs. J Ecol 90: 1033–1043.CrossRefGoogle Scholar
  68. Soriano, A., R.A. Sanchez & B.A. Eilberg, 1964. Factors and processes in the germination of Datura ferox L. Can. J Bot 42: 1189–1203.CrossRefGoogle Scholar
  69. Soriano, A., R.J.C. León, R.S. Lavado, V.A. Deregibus, M.A. Cahuepé, O.A. Scaglia, C.A. Velázquez & J.H. Lemcoff, 1991. Río de la Plata grassland. In: R.T. Coupland (Ed.), Ecosystem of the World-natural grasslands, vol 8A, pp. 367–407. Elsevier, Amsterdam.Google Scholar
  70. Tomback, D.F. & B. Linhart, 1990. The evolution of bird-dispersed pines. Evol Ecol 4: 185–219.CrossRefGoogle Scholar
  71. Thompson, K. & J. Grime, 1979. Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. J Ecol 67: 893–921.Google Scholar
  72. Thompson, K., S.R. Band & J.G. Hodson, 1993. Seed size and shape predict persistence in soil. Funct Ecol 7: 236–241.Google Scholar
  73. Thompson, K., J.P. Bakker & R.M. Bekker, 1998. Ecological correlates of seed persistence in the soil in the NW European flora. J Ecol 86: 163–170.CrossRefGoogle Scholar
  74. Van Esso, M.L., C.M. Ghersa & A. Soriano, 1986. Cultivation effects on the dynamics of a Johnsongrass seed population in the soil. Soil Till Res 6: 325–335.CrossRefGoogle Scholar
  75. Venable, D.L., 1989. Modeling the evolutionary ecology of seed banks. In: M. Allessio Leck, V.T. Parker & R.L. Simpson (Eds.), Ecology of Soil Seed Banks, pp. 67–90. Academic Press, San Diego.Google Scholar
  76. Vibrans, H., 1999. Epianthropochory in Mexican weed communities. Am J Bot 84: 476–481.CrossRefGoogle Scholar
  77. Warwick, S.I. & L.D. Black, 1983. The biology of Canadian weeds. Sorghum halepense (L.) Pers. Can J Plant Sci 63: 997–1014.CrossRefGoogle Scholar
  78. Williamson, M., 1996. Biological invasions. Chapman & Hall, London.Google Scholar
  79. Wilson, R.G., 1988. Biology of weed seeds in the soil. In: M.A. Altieri & M. Liebman (Eds.), Weed Management in agroecosystems. Ecological approaches, pp. 25–39. CRC Press Inc., Boca Raton, FL.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • M. Alejandra Martínez-Ghersa
    • 1
  • Claudio M. Ghersa
    • 1
  1. 1.IFEVA, Depto. de Recursos Naturales y Ambiente, Facultad de AgronomíaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations