Euphytica

, Volume 147, Issue 1–2, pp 81–103 | Cite as

Chickpea molecular breeding: New tools and concepts

  • Teresa Millan
  • Heather J. Clarke
  • Kadambot H. M. Siddique
  • Hutokshi K. Buhariwalla
  • Pooran M. Gaur
  • Jagdish Kumar
  • Juan Gil
  • Guenter Kahl
  • Peter Winter
Article

Summary

Chickpea is a cool season grain legume of exceptionally high nutritive value and most versatile food use. It is mostly grown under rain fed conditions in arid and semi-arid areas around the world. Despite growing demand and high yield potential, chickpea yield is unstable and productivity is stagnant at unacceptably low levels. Major yield increases could be achieved by development and use of cultivars that resist/tolerate abiotic and biotic stresses. In recent years the wide use of early maturing cultivars that escape drought stress led to significant increases in chickpea productivity. In the Mediterranean region, yield could be increased by shifting the sowing date from spring to winter. However, this is hampered by the sensitivity of the crop to low temperatures and the fungal pathogen Ascochyta rabiei. Drought, pod borer (Helicoverpa spp.) and the fungus Fusarium oxysporum additionally reduce harvests there and in other parts of the world. Tolerance to rising salinity will be a future advantage in many regions. Therefore, chickpea breeding focuses on increasing yield by pyramiding genes for resistance/tolerance to the fungi, to pod borer, salinity, cold and drought into elite germplasm. Progress in breeding necessitates a better understanding of the genetics underlying these traits. Marker-assisted selection (MAS) would allow a better targeting of the desired genes. Genetic mapping in chickpea, for a long time hampered by the little variability in chickpea’s genome, is today facilitated by highly polymorphic, co-dominant microsatellite-based markers. Their application for the genetic mapping of traits led to inter-laboratory comparable maps. This paper reviews the current situation of chickpea genome mapping, tagging of genes for ascochyta blight, fusarium wilt resistance and other traits, and requirements for MAS. Conventional breeding strategies to tolerate/avoid drought and chilling effects at flowering time, essential for changing from spring to winter sowing, are described. Recent approaches and future prospects for functional genomics of chickpea are discussed.

Key Words

chickpea breeding functional genomics genetic map pathogen resistance stress tolerance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbo, S., J. Berger & N.C. Turner, 2003. Evolution of cultivated chickpea: Four bottlenecks limit diversity and constrain adaptation. Funct Plant Biol 30: 1081–1087.CrossRefGoogle Scholar
  2. Abbo, S., N.C. Turner, R.J. French & J. Berger, 2002. Breeding for osmotic adjustment in chickpea (Cicer arietinum L.). In: J.A. McComb (Ed.), Plant Breeding for the 11th Millenium: Proceedings of the 12th Australian Plant Breed Conference, 15–20 September 2002, Australian Plant Breeding Association Inc., Perth, Western Australia, Australia, pp. 463–467.Google Scholar
  3. Abbo, S., C. Molina, R. Jungmann, M.A. Grusak, Z. Berkovitch, Ruth Reifen, G. Kahl, P. Winter & R. Reifen, 2005. Quantitative trait loci governing carotenoid concentration and weight in seeds of chickpea (Cicer arietinum L.). Theor Appl Genet 111: 185–195.PubMedCrossRefGoogle Scholar
  4. Agharkar, S.P., 1991. Medicinal Plants of Bombay Presidency, pp 62–63. Scientific Publications, Jodhpur, India.Google Scholar
  5. Ansari, M.A., B.A. Patel, N.L. Mhase, D.J. Patel, A. Douaik & S.B. Sharma, 2004. Tolerance of chickpea (Cicer arietinum L.) lines to root-knot nematode, Meilodogyne javanica (Treub) Chitwood. Genet Resour Crop Evol 51: 449–453.CrossRefGoogle Scholar
  6. Arumuganathan, K. & E.D. Earle, 1991. Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9: 208–218.Google Scholar
  7. Asharf, M. & A. Waheed, 1992. Screening chickpea (Cicer arietinum L.) for salt tolerance. Tropenlandwirt 93: 45–55.Google Scholar
  8. Barve, M.P., T. Arie, S.S. Salimath, F.J. Muehlbauer & T.L. Peever, 2003. Cloning and characterization of the mating type (MAT) locus from Ascochyta rabiei (teleomorph: Didymella rabiei) and a MAT phylogeny of legume-associated Ascochyta spp. Fungal Genet Biol 39: 151–167.PubMedCrossRefGoogle Scholar
  9. Barz, W. & U. Mackenbrock, 1994. Constitutive and elicitation induced metabolism of isoflavones and pterocarpans in chickpea (Cicer arietinum L.) cell-suspension cultures. Plant Cell Tissue Organ Culture 38: 199–211.CrossRefGoogle Scholar
  10. Benko-Iseppon, A.M., P. Winter, B. Huettel, C. Staginnus, F.J. Muehlbauer & G. Kahl, 2003. Molecular markers closely linked to fusarium resistance genes in chickpea show significant alignments to pathogenesis-related genes located on Arabidopsis chromosomes 1 and 5. Theor Appl Genet 107: 379–386.PubMedCrossRefGoogle Scholar
  11. Berger, J., S. Abbo & N.C. Turner, 2003. Ecogeography of annual wild Cicer species: The poor state of the world collection. Crop Sci 43: 1076–1090.CrossRefGoogle Scholar
  12. Blum, A., 1989. Osmotic adjustment and growth of barley genotypes under drought stress. Crop Sci 29: 230–233.CrossRefGoogle Scholar
  13. Boominathan, P., R. Shukla, A. Kumar, D. Manna, D. Negi, P.K. Verma & D. Chattopadhyay, 2004. Long term transcript accumulation during the development of dehydration adaptation in Cicer arietinum. Plant Physiol 135: 1608–1620.PubMedCrossRefGoogle Scholar
  14. Brading, P.A., K.E. Hammond-Kosack, J.D.G. Parr & A. Jones, 2000. Salicylic acid is not required for Cf-2- and Cf-9-dependent resistance of tomato to Cladosporium fulvum. Plant J 23: 305–318.PubMedCrossRefGoogle Scholar
  15. Buhariwalla, H.K., B. Jayashree & J.H. Crouch, 2005. Development of ESTs from chickpea roots and their use in diversity analysis of the Cicer genus. BMC Plant Biol 5: 16.PubMedCrossRefGoogle Scholar
  16. Caetano-Anollés, G., B.J. Bassam & P.M. Gresshoff, 1991. DNA amplification fingerprinting using short arbitrary oligonucleotide primers. Biotechnology 9: 553–557.PubMedCrossRefGoogle Scholar
  17. Chandra, S., H.K. Buhariwalla, J. Kashiwagi, S. Harikrishna, K.R. Sridevi, L. Krishnamurthy, R. Serraj & J.H. Crouch, 2004. Identifying QTL-linked markers in marker-deficient crops. In: International Crop Science Congress, 26 September–1 October, Brisbane, Australia.Google Scholar
  18. Charles, M.T., R. Dominique, J. Kumar & O.P. Dangi, 2002. A preliminary study of the functional properties of chickpea leaves. In: Annual Meeting of the Canadian Society of Food and Nutrition, May 2002, Edmonton, Alberta, Canada.Google Scholar
  19. Cho, S. & F.J. Muehlbauer, 2004. Genetic effect of differentially regulated fungal response genes on resistance to necrotrophic fungal pathogens in chickpea (Cicer arietinum L.). Physiol Mol Plant Pathol 64: 57–66.CrossRefGoogle Scholar
  20. Cho, S., J. Kumar, J.F. Shultz, K. Anupama, F. Tefera & F.J. Muehlbauer, 2002. Mapping genes for double podding and other morphological traits in chickpea. Euphytica 125: 285–292.CrossRefGoogle Scholar
  21. Cho, S., W. Chen & F.J. Muehlbauer, 2004. Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to ascochyta blight. Theor Appl Genet 109: 733–739.PubMedCrossRefGoogle Scholar
  22. Choumane, W., P. Winter, F. Weigand & G. Kahl, 2000. Conservation and variability of sequence-tagged microsatellite sites (STMSs) from chickpea (Cicer arietinum L.) within the genus Cicer. Theor Appl Genet 101: 269–278.CrossRefGoogle Scholar
  23. Clarke, H. & K.H.M. Siddique, 2003. Chilling tolerance in chickpea – Novel methods for crop improvement. In: R.N. Sharma, M. Yasin, S.L. Swami, M.A. Khan & A.J. William (Eds.), International Chickpea Conference, Indira Ghandhi Agricultural University, Raipur, India, pp. 5–12.Google Scholar
  24. Clarke, H. & K.H.M. Siddique, 2004. Response of chickpea genotypes to low temperature stress during reproductive development. Field Crops Res 90: 323–334.CrossRefGoogle Scholar
  25. Clarke, H., T.N. Khan & K.H.M. Siddique, 2004a. Pollen selection for chilling tolerance at hybridisation leads to improved chickpea cultivars. Euphytica 139: 65–74.CrossRefGoogle Scholar
  26. Clarke, H., I. Kuo, J. Kuo & K.H.M. Siddique, 2004b. Abortion and stages for embryo rescue following wide crosses between chickpea (Cicer arietinum L.) and C. bijugum (K.H. Rech.). In: 5th European Conference on Grain Legumes, AEP, Dijon, France, p. 192.Google Scholar
  27. Cobos, M.J., M. Iruela, J. Rubio, T. Millán, J.I. Cubero & J. Gil, 2004. Genetic analyses of flowering time in a chickpea interspecific cross (Cicer arietinum L. × C. reticulatum Lad.). In: 5th European Conference on Grain Legumes, AEP, Dijon, France, p. 263.Google Scholar
  28. Cobos, M.J., M.J. Fernández, J. Rubio, M. Kharrat, M.T. Moreno, J. Gil & T. Millán, 2005. A linkage map in chickpea (Cicer arietinum L.) in two populations from Kabuli × Desi crosses: Location of a resistance gene for fusarium wilt race 0. Theor Appl Genet 110: 1347–1353.PubMedCrossRefGoogle Scholar
  29. Collard, B.C.Y., E.C.K. Pang, P.K. Ades & P.W.J. Taylor, 2003. Preliminary investigation of QTLs associated with seedling resistance to ascochyta blight from Cicer echinospermum, a wild relative of chickpea, Theor Appl Genet 107: 719–729.PubMedCrossRefGoogle Scholar
  30. Comai, L., K. Young, J.T. Bradley, S.H. Reynolds, E.A. Green, C.A. Codomo, L.C. Enns, J.E. Johnson, C. Burtner, A.R. Odden & S. Henikoff, 2004. Efficient discovery of polymorphisms in natural populations by EcoTILLING. Plant J (published online at DOI: 10.1111/j.1365–313X.2003.01999.x)Google Scholar
  31. Cornels, H., Y. Ichinose & W. Barz, 2000. Characterization of cDNAs encoding two glycine-rich proteins in chickpea (Cicer arietinum L.): Accumulation in response to fungal infection and other stress factors. Plant Sci 154: 83–88.PubMedCrossRefGoogle Scholar
  32. Croser, J.S., F. Ahmad, H.J. Clarke & K.H.M. Siddique, 2003a. Utilization of wild Cicer in chickpea improvement–Progress, constraints and prospects. Aust J Agric Res 54: 429–444.CrossRefGoogle Scholar
  33. Croser, J.S., H.J. Clarke, K.H.M. Siddique & T.N. Khan, 2003b. Low temperature stress: Implications for chickpea (Cicer arietinum L.) improvement. Crit Rev Plant Sci 22: 185–219.Google Scholar
  34. Dey, S.K. & G. Singh, 1993. Resistance to ascochyta blight in chickpea–Genetic basis. Euphytica 68: 147–153.CrossRefGoogle Scholar
  35. Díaz-Franco, A. & P. Pérez-García, 1995. Control químico de la roya y la rabia del garbanzo y su influencia en el rendimiento del grano. Revista Mexicana de Fitopatología 13: 123–125.Google Scholar
  36. Drenkard, E., B.G. Richter, S. Rozen, L.M. Stutius, N.A. Angell, M. Mindrinos, R.J. Cho, P.J. Oefner, R.W. Davis & F.M. Ausubel, 2000. A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis. Plant Physiol 124: 1483–1492.PubMedCrossRefGoogle Scholar
  37. Dua, R.P. & P.C. Sharma, 1995. Salinity tolerance of kabuli and desi chickpea genotypes. Int. Chickpea Pigeonpea Newslett 2: 19–22.Google Scholar
  38. FAOSTAT data, 2005. http://faostat.fao.org/faostat/collections?subset=agriculture. Last updated February 2005.
  39. Flandez-Galvez, H., P.K. Ades, R. Ford, E.C.K. Pang & P.W.J. Taylor, 2003a. QTL analysis for ascochyta blight resistance in an intraspecific population of chickpea (Cicer arietinum L.). Theor Appl Genet 107: 1257–1265.CrossRefGoogle Scholar
  40. Flandez-Galvez, H., R. Ford, E.C.K. Pang & P.W.J. Taylor, 2003b. An intraspecific linkage map of the chickpea (Cicer arietinum L.) genome based on sequence-tagged microsatellite site and resistance gene analog markers. Theor Appl Genet 106: 1447–1456.Google Scholar
  41. Gaur, P.M. & A.E. Slinkard, 1990. Genetic control and linkage relations of additional isozyme markers in chickpea. Theor Appl Genet 80: 648–656.CrossRefGoogle Scholar
  42. Gil, J. & J.I. Cubero, 1993. Inheritance of seed coat thickness in chickpea (Cicer arietinum L.) and its evolutionary implications. Plant Breed 111: 257–260.CrossRefGoogle Scholar
  43. Gil, J., S. Nadal, D. Luna, M.T. Moreno & A. de Haro, 1996. Variability of some physico-chemical characters in Desi and Kabuli chickpea types. J Sci Food Agric 71: 179–184.CrossRefGoogle Scholar
  44. Gortner, G., M. Nenno, K. Weising, D. Zink, W. Nagl & G. Kahl, 1998. Chromosomal localization and distribution of simple sequence repeats and the Arabidopsis-type telomere sequence in the genome of Cicer arietinum L. Chromosome Res 6: 97–104.PubMedCrossRefGoogle Scholar
  45. Greco, N., 1987. Nematodes and their control in chickpea. In: M.C. Saxena & K.B. Singh (Eds.), The Chickpea, pp. 271–282. CAB International, UK.Google Scholar
  46. Gumber, R.K., J. Kumar & M.P. Haware, 1995. Inheritance of resistance to fusarium wilt in chickpea. Plant Breed 114: 277–279.CrossRefGoogle Scholar
  47. Halila, M.H., N.I. Hadad, B. Sakr & I. Kusmenoglu, 2000. Regional Reviews–Region 5 Near East. In: R. Knight (Ed.), Linking Research and Marketing Opportunities for Pulses in the 21st Century, pp. 107–114. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  48. Hanselle, T., Y. Ichinose & W. Barz, 2001. Biochemical and molecular biological studies on infection (Ascochyta rabiei)-induced thaumatin-like proteins from chickpea plants (Cicer arietinum L.). Z Naturforsch [C] 56: 1095–1107.Google Scholar
  49. Hanselle, T., C. Schwenger-Erger & W. Barz, 1999. Isolation of a full length chalcone synthase cDNA (Accession No. AJ012822) from infected chickpea plants (Cicer arietinum L.). Plant Physiol 120: 934–934.Google Scholar
  50. Haware, M.P., 1998. Diseases of chickpea. In: The Pathology of Food and Pasture Legumes, pp. 473–516. CAB International, UK.Google Scholar
  51. Haware, M.P. & Y.L. Nene, 1982. Races of Fusarium oxysporum f. sp. ciceris. Plant Dis 66: 809–810.CrossRefGoogle Scholar
  52. Hayashi, K., N. Hashimoto, M. Daigen & I. Ashikawa, 2004. Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. Theor Appl Genet 108: 1212–1220.PubMedCrossRefGoogle Scholar
  53. Hein, F., S. Overkamp & W. Barz, 2000. Cloning and characterization of a full-length cDNA (accession no. AJ250836) encoding phenylalanine ammonia-lyase from chickpea (PGR00-038). Plant Physiol 122: 1458–1458.Google Scholar
  54. Hoehl, B., M. Pfautsch & W. Barz, 1990. Histology of disease development in resistant and susceptible cultivars of chickpea (Cicer arietinum L.) inoculated with spores of Ascochyta rabiei. J Phytopathol 129: 31–45.Google Scholar
  55. Hong, Z., K. Lakkineni, Z. Zhang & D.P.S. Verma, 2000. Removal of feedback inhibition of 1 pyrroline-5-carboxylate synthetase (P5CS) results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122: 1129–1136.PubMedCrossRefGoogle Scholar
  56. Hormaza, J.I. & M. Herrero, 1996. Male gametophytic selection as a plant breeding tool. Sci Hort 65: 321–333.CrossRefGoogle Scholar
  57. Hovav, R., K.C. Upadhyaya, A. Beharav & S. Abbo, 2003. Major flowering time gene and polygene effects on chickpea seed weight. Plant Breed 122: 539–541.CrossRefGoogle Scholar
  58. Hüttel, B., J. Santra, F.J. Muehlbauer & G. Kahl, 2002. Resistance gene analogues of chickpea (Cicer arietinum L.): Isolation, genetic mapping and association with a Fusarium resistance gene cluster. Theor Appl Genet 105: 479–490.CrossRefGoogle Scholar
  59. Hüttel, B., P. Winter, K. Weising, W. Choumane, F. Weigand & G. Kahl, 1999. Sequence-tagged microsatellite-site markers for chickpea (Cicer arietinum L.). Genome 42: 210–217.PubMedCrossRefGoogle Scholar
  60. Ibrikci, H., S. Knewtson & M.A. Grusak, 2003. Chickpea leaves as a vegetable green for humans: Evaluation of mineral composition. J Sci Food Agric 83: 945–950.CrossRefGoogle Scholar
  61. Ichinose, Y., K. Tiemann, C. Schwenger-Erger, K. Toyoda, F. Hein, T. Hanselle, H. Cornels & W. Barz, 2000. Genes expressed in Ascochyta rabiei-inoculated chickpea plants and elicited cell cultures as detected by differential cDNA-hybridization. Z Naturforsch [C] 55: 44–54.Google Scholar
  62. Ichinose, Y., K. Toyoda & W. Barz, 1999. cDNA cloning and gene expression of three small GTP-binding proteins in defense response of chickpea. Biochem Biophys Acta 1489: 462–466.PubMedGoogle Scholar
  63. ICRISAT (International Crops Research Institute for the Semi-Arid Tropics), 1994. Cold tolerant chickpea varieties ICCV 88503, ICCV 88506, ICCV 88510. Plant Mater Descript 53.Google Scholar
  64. ICRISAT (International Crops Research Institute for the Semi-Arid Tropics), 2003. In: Archival Report: Global Theme Biotechnology, pp. 31–35. Patancheru, AP, India.Google Scholar
  65. Iruela, M., J. Rubio, J.I. Cubero, J. Gil & T. Millán, 2002. Phylogenetic analysis in the genus Cicer and cultivated chickpea using RAPD and ISSR markers. Theor Appl Genet 104: 643–651.PubMedCrossRefGoogle Scholar
  66. Iruela, M., J. Rubio, F. Barro, J.I. Cubero, T. Millán, J. Gil, 2006. Detection of two QTL for resistance to Ascochyta Blight in an intra-specific cross of chickpea (Cicer arietinum L.): Development of SCAR markers associated to resistance. Theor Appl Genet 112: 278–287.PubMedCrossRefGoogle Scholar
  67. Jamil, F.F., N. Sarwar, M. Sarwar, J.A. Khan, J. Geistlinger & G. Kahl, 2001. Genetic and pathogenic diversity within Ascochyta rabiei (Pass.) Lab. populations in Pakistan causing blight of chickpea (Cicer arietinum L.). Physiol Mol Plant Pathol 57: 243–254.CrossRefGoogle Scholar
  68. Jana, S. & K.B. Singh, 1993. Evidence on geographical divergence in Kabuli chickpea from germplasm evaluation data. Crop Sci 33: 626–632.CrossRefGoogle Scholar
  69. Jayanand, B., G. Sudarsanam, & K.K. Sharma, 2003. An efficient protocol for the regeneration of whole plants of chickpea (Cicer arietinum L.) by using axillary meristem explants derived from in vitro-germinated seedlings. In Vitro Cell Dev Biol Plant 39: 171–179.CrossRefGoogle Scholar
  70. Jayashree, B., H.K. Buhariwalla, S. Shinde, P.V. Kumar & J.H. Crouch, 2005. A legume genomics resource: The chickpea root expressed sequence tag database and bioinformatics tools. Electron J Biotechnol 8: 128–133.CrossRefGoogle Scholar
  71. Jiménez-Díaz, R.M., A.R. Alcalá-Jiménez, A. Hervás & J.L. Trapero-Casas, 1993. Pathogenic variability and host resistance in the Fusarium oxysporum f. sp. ciceris/C. arietinum pathosystem. In: Proceedings of the 3rd European Seminar on Fusarium Mycotoxins, Taxonomy, Pathogenicity and Host Resistance, Plant Breeding and Acclimatization, Inst, Radzikóv, Poland, pp. 87–94.Google Scholar
  72. Jiménez-Gasco, M.M., J.A. Navez-Cortez & R.M. Jiménez-Díaz, 2004. The Fusarium oxysporum f. sp. ciceris/C. arietinum pathosystem: A case study of the evolution of plant-pathogenic fungi into races and pathotypes. Intern Microbiol 7: 95– 104.Google Scholar
  73. Kaiser, W.J., A.R. Alcalá-Jiménez, A. Hervás-Vargas, J.L. Trapero-Casas & R.M. Jiménez-Díaz, 1994. Screening wild species for resistance to races 0 and 5 of Fusarium oxysporum f. sp. ciceris. Plant Dis 78: 962–967.CrossRefGoogle Scholar
  74. Kaiser, W.J., M.D. Ramsay, K.M. Makkouk, T.W. Bretag, N. Acikgoz, J. Kumar & F.W. Nutter, 2000. Foliar diseases of cool season food legumes and their control. In: R. Knight (Ed.), Linking Research and Marketing Opportunities for Pulses in the 21st Century, pp. 437–455. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  75. Kanazin, V., L.F. Marek & R.C. Shoemaker, 1996. Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA 93: 11746–11750.PubMedCrossRefGoogle Scholar
  76. Kasuga, M., Q. Liu, S. Miura, K. Yamaguchi-Shinozaki & K. Shinozaki, 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17: 287–291.PubMedCrossRefGoogle Scholar
  77. Kathiria, K.B., D.R. Nayagapara, M.A. Vaddoria & V.K. Poshiya, 1997. Screening of chickpea genotypes for salinity tolerance during germination and early seedling growth. Gujarat Agric Univ Res J 22: 28–32.Google Scholar
  78. Kazan, K., F.J. Muehlbauer, N.F. Weeden & G. Ladizinsky, 1993. Inheritance and linkage relationships of morphological and isozyme loci in chickpea (Cicer arietinum L.). Theor Appl Genet 86: 417–426.CrossRefGoogle Scholar
  79. Khanna-Chopra, R. & S.K. Sinha, 1987. Chickpea: Physiological aspects on growth and yield. In: M.C. Saxena & K.B. Singh (Eds.), The Chickpea, pp. 163–189. CAB International, Wallingford, UK.Google Scholar
  80. Knights, E.J. & K.H.M. Siddique, 2002. Chickpea status and production constraints in Australia. In: M. Abu Bakr, K.H.M. Siddique & C. Johansen (Eds.), Integrated Management of Botrytus Grey Mould of Chickpea in Bangladesh and Australia: Summary of Proceedings of a Project Inception Workshop, 1–2 June 2002, Bangladesh Agricultural Research Institute, Joydebpur, Gazipur, Bangladesh, pp. 33–45.Google Scholar
  81. Kraft, J.M., M.P. Haware, H. Halila, M. Sweetingham & B. Bayaa, 2000. Soilborne diseases and their control. In: R. Knight (Ed.), Linking Research and Marketing Opportunities for Pulses in the 21st Century, pp. 457–466. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  82. Krishnamurthy, L., J. Kashiwagi, H.D. Upadhyaya & R. Serraj, 2003. Genetic diversity of drought-avoidance root traits in the mini-core germplasm collection of chickpea. Int Chickpea Pigeonpea Newslett 10: 21–24.Google Scholar
  83. Kumar, J., 1998. Inheritance of resistance to Fusarium wilt (race 2) in chickpea. Plant Breed 117: 139–142.CrossRefGoogle Scholar
  84. Kumar, J. & S. Abbo, 2001. Genetics of flowering time in chickpea and its bearing on productivity in the semi-arid environments. Adv Agron 72: 107–138.CrossRefGoogle Scholar
  85. Kumar, J. & B.V. Rao, 2001. Registration of “Superearly 96029” Chickpea. Crop Sci 41: 605–606.CrossRefGoogle Scholar
  86. Kumar, J., S.C. Sethi, C. Johansen, T.G. Kelley, M.M. Rahman & H.A. van Rheenen, 1996. The potential of short-duration chickpea varieties. Indian J Dryland Agric Dev 11: 28–32.Google Scholar
  87. Kumar, J. & H.A. van Rheenen, 2000. A major gene for time of flowering in chickpea. J Hered 91: 67–68.PubMedCrossRefGoogle Scholar
  88. Ladizinsky, G. & A. Adler, 1976. The origin of chickpea Cicer arietinum L. Euphytica 25: 211–217.CrossRefGoogle Scholar
  89. Leport, L., N.C. Turner, R.J. French, M.D. Barr, R. Duda, S.L. Davies, D. Tennant & K.H.M. Siddique, 1999. Physiological responses of chickpea genotypes to terminal drought in a Mediterranean type environment. Eur J Agron 11: 279–291.CrossRefGoogle Scholar
  90. Lev-Yadun, S., A. Gopher & S. Abbo, 2000. The cradle of agriculture. Science 288: 1062–1063.CrossRefGoogle Scholar
  91. Lichtenzveig, J., C. Scheuring, J. Dodge, S. Abbo & H.B. Zhang, 2005. Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, Cicer arietinum L. Theor Appl Genet 110: 492–510.PubMedCrossRefGoogle Scholar
  92. Maas, E.V. & G.J. Hoffman, 1977. Crop salt tolerance–Current assessment. J. Irrig Drain Div Proc Am Soc Civil Eng 103: 115–134.Google Scholar
  93. Mackenbrock, U., W. Gunia & W. Barz, 1993. Accumulation and metabolism of medicarpin and maackiain malonylglucosides in elicited chickpea (Cicer arietinum L.) cell-suspension cultures. J Plant Physiol 142: 385–391.Google Scholar
  94. Maliro, M.F.A., D. McNeil, J. Kollmorgen, C. Pittock & B. Redden, 2004. Screening chickpea (Cicer arietinum L.) and wild relatives germplasm from diverse country sources for salt tolerance. In: International Crop Science Congress, 26 September–1 October, Brisbane, Australia.Google Scholar
  95. Mallikarjuna, N., 1999. Ovule and embryo culture to obtain hybrids from interspecific incompatible pollinations in chickpea. Euphytica 110: 1–6.CrossRefGoogle Scholar
  96. Matsumura, H., S. Reich, A. Ito, H. Saitoh, S. Kamoun, P. Winter, G. Kahl, M. Reuter, D.H. Kruger & R. Terauchi, 2003. Gene expression analysis of plant host–pathogen interactions by SuperSAGE. Proc Natl Acad Sci USA 100: 15718–1523.PubMedCrossRefGoogle Scholar
  97. Mayer, M.S., A. Tullu, C.J. Simon, J. Kumar, W.J. Kaiser, J.M. Kraft & F.J. Muehlbauer, 1997. Development of a DNA marker for Fusarium wilt resistance in chickpea. Crop Sci 37: 1625–1629.CrossRefGoogle Scholar
  98. McIntosh, G.H. & D.L. Topping, 2000. Food legumes in human nutrition. In: R. Knight (Ed.), Linking Research and Marketing Opportunities for Pulses in the 21st Century, pp. 655–666. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  99. Millán, T., J. Rubio, M. Iruela, K. Daly, J.I. Cubero & J. Gil, 2003. Markers associated with Ascochyta blight resistance in chickpea an their potential in marker-assisted selection. Field Crops Res 84: 373–384.CrossRefGoogle Scholar
  100. Moinuddin, & R. Khanna-Chopra, 2004. Osmotic adjustment in chickpea in relation to seed yield and yield parameters. Crop Sci 44: 449–455.Google Scholar
  101. Moreno, M.T. & J.I. Cubero, 1978. Variation in Cicer arietinum L. Euphytica 27: 465–485.CrossRefGoogle Scholar
  102. Morgan, J.M., 1984. Osmoregulation and water stress in higher plants. Annu Rev Plant Physiol 35: 299–319.CrossRefGoogle Scholar
  103. Morgan, J.M., R.A. Hae & R.J. Fletcher, 1986. Genetic variation in osmoregulation in bread and durum wheats and its relationships to grain yield in a range of field environments. Aust J Agric Res 37: 449–457.CrossRefGoogle Scholar
  104. Morgan, J.M., M.B. Rodriguez & E.J. Knights, 1991. Adaptation to water deficit in chickpea breeding lines by osmoregulation: Relationship to grain yields in the field. Field Crops Res 27: 61–70.CrossRefGoogle Scholar
  105. Morjane, H., J. Geistlinger, M. Harrabi, K. Weising & G. Kahl, 1994. Oligonucleotide fingerprinting detects genetic diversity among Ascochyta rabiei islolates from a single chickpea field in Tunisia. Curr Genet 26: 191–197.PubMedCrossRefGoogle Scholar
  106. Muehlbauer, F.J. & K.B. Singh, 1987. Genetics of chickpea. In: M.C. Saxena & K.B. Singh (Eds.), The Chickpea, pp. 99–125. CAB International, Wallingford, UK.Google Scholar
  107. Musa, A.M., D. Harris, C. Johansen & J. Kumar, 2001. Short duration chickpea to replace fallow after Aman rice: The role of on-farm seed priming in the high Barind tract of Bangladesh. Exp Agric 37: 509–521.CrossRefGoogle Scholar
  108. Nayyer, H., T. Bains & S. Kumar, 2005. Low temperature induced floral abortion in chickpea: Relationship to abscisic acid and cryoprotectans in reproductive organs: Environmental and Experimental Botany 53: 39–47.Google Scholar
  109. Nene, Y.L. & M.V. Reddy, 1987. Chickpea Diseases and their control. In: M.C. Saxena & K.B. Singh (Eds.), The Chickpea, pp. 233–270. CAB International, Wallingford. UK.Google Scholar
  110. Nguyen, T.T., P.W.J. Taylor, R.J. Redden & R. Ford, 2004. Genetic diversity estimates in Cicer using AFLP analysis. Plant Breed 123: 173–179.CrossRefGoogle Scholar
  111. Or, E., R. Hovav & S. Abbo, 1999. A major gene for flowering time in chickpea. Crop Sci 39: 315–322.Google Scholar
  112. Otte, O., A. Pachten, F. Hein & W. Barz, 2001. Early elicitor-induced events in chickpea cells: Functional links between oxidative burst, sequential occurrence of extracellular alkalinisation and acidification, K+/H+ exchange and defense-related gene activation. Z Naturforsch [C] 56: 65–76.Google Scholar
  113. Overkamp, S., F. Hein & W. Barz, 2000. Cloning and characterization of eight cDNAs from chickpea (Cicer arietinum L.) cell suspension cultures. Plant Sci 155: 101–108.PubMedCrossRefGoogle Scholar
  114. Pande, S., G.K. Kishore & J.N. Rao, 2004. Evaluation of chickpea lines to dry root rot caused by Rhizoctonia bataticola. Int Chickpea Pigeonpea Newslett 11: 37–38.Google Scholar
  115. Paran, I. & R.W. Michelmore, 1993. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85: 985–993.CrossRefGoogle Scholar
  116. Patankar, A.G., A.M. Harsulkar, A.P. Giri, V.S. Gupta, M.N. Sainani, P.K. Ranjekar & V.V. Deshpande, 1999. Diversity in inhibitors of trypsin and Helicoverpa armigera gut proteinases in chickpea (Cicer arietinum) and its wild relatives. Theor Appl Genet 99: 719–726.CrossRefGoogle Scholar
  117. Peever, T.L., S.S. Salimath, G. Su, W.J. Kaiser & F.J. Muehlbauer, 2004. Historical and contemporary multilocus population structure of Ascochyta rabiei (teleomorph: Didymella rabiei) in the Pacific Northwest of the United States. Mol Ecol 13: 291–309.PubMedCrossRefGoogle Scholar
  118. Pfaff, T. & G. Kahl, 2003. Mapping of gene-specific markers on the genetic map of chickpea (Cicer arietinum L.). Mol Genet Genom 269: 243–251.Google Scholar
  119. Prajapati, R.K., R.K. Gangwar & S.S.L. Srivastava, 2003. Resistance source of chickpea against dry root rot. Farm Sci J 12: 86.Google Scholar
  120. Rajesh, P.N., C. Coyne, K. Meksem, D.K. Sharma, V. Gupta & F.J. Muehlbauer, 2004. Construction of a HindIII bacterial artificial chromosome library and its use in identification of clones associated with disease resistance in chickpea. Theor Appl Genet 108: 663–669.PubMedCrossRefGoogle Scholar
  121. Rajesh, P.N., A. Tullu, J. Gil, V.S. Gupta, P.K. Ranjekar & F.J. Muehlbauer, 2002. Identification of an STMS marker for the double-podding gene in chickpea. Theor Appl Genet 105: 604–607.PubMedCrossRefGoogle Scholar
  122. Rakshit, S., P. Winter, M. Tekeoglu, J. Juarez Muñoz, T. Pfaff, A.M. Benko-Iseppon, F.J. Muehlbauer & G. Kahl, 2003. DAF marker tightly linked to a major locus for Ascochyta blight resistance in chickpea (Cicer arietinum L.). Euphytica 132: 23–30.CrossRefGoogle Scholar
  123. Ratnaparkhe, M.B., D.K. Santra, A. Tullu & F.J. Muehlbauer, 1998. Inheritance of inter-simple-sequence-repeat polymorphisms and linkage with a fusarium wilt resistance gene in chickpea. Theor Appl Genet 96: 348–353.CrossRefGoogle Scholar
  124. Reddy, M.V. & K.B. Singh, 1984. Evaluation of a world collection of chickpea germplasm accessions for resistance to Ascochyta blight. Plant Dis 68: 900–901.Google Scholar
  125. Reed, W., C. Cardona, S. Sithanantham & S.S. Lateef, 1987. The chickpea insect pests and their control. In: M.C. Saxena & K.B. Singh (Eds.), The Chickpea, pp. 283–318. CAB International, Wallingford, UK.Google Scholar
  126. Roberts, E.H., P. Hadley & R.J. Summerfield, 1985. Effect of temperature and photoperiod on flowering in chickpeas (Cicer arietinum L.). Ann Bot 55: 881–892.Google Scholar
  127. Roetschi, A., A. Si-Ammour, L. Belbahri, F. Mauch & B. Mauch-Mani, 2001. Characterization of an ArabidopsisPhytophthora pathosystem: Resistance requires a functional PAD2 gene and is independent of salicylic acid, ethylene and jasmonic acid signalling. Plant J 28: 293–305.PubMedCrossRefGoogle Scholar
  128. Romo, S., E. Labrador & B. Dopico, 2001. Water stress-regulated gene expression in Cicer arietinum seedlings and plants. Plant Physiol Biochem 39: 1017–1026.CrossRefGoogle Scholar
  129. Rubiales, D.J., I. Moreno, M.T. Moreno & J.C. Sillero, 2001. Identification of partial resistance to chickpea rust (Uromyces ciceris-arietini). In: Proceedings of 4th European Conference on Grain Legumes, AEP, Cracow, Poland, pp. 194–195.Google Scholar
  130. Rubiales, D., A. Pérez de Luque, D.M. Joel, C. Alcantara & J.C. Sillero, 2003. Characterization of resistance in chickpea to broomrape (Orobanche crenata). Weed Sci 51: 702–707.Google Scholar
  131. Rubiales, D., J.C. Sillero & M.T. Moreno, 1999. Resistance to Orobanche crenatam in chickpea. In: J.I. Cubero, M.T. Moreno, D. Rubiales & J.C. (Eds.), Resistance to Broomrape. The State of the Art, Junta de Andalucía, Sevilla, Spain.Google Scholar
  132. Rubio, J., F. Flores, M.T. Moreno, J.I. Cubero & J. Gil, 2004. Effects of the erect/bushy habit, single/double pod and late/early flowering genes on yield and seed size and their stability in chickpea. Field Crops Res 90: 255–262.CrossRefGoogle Scholar
  133. Rubio, J., E. Moussa, M. Kharrat, M.T. Moreno, T. Millán & J. Gil, 2003. Two genes and linked RAPD markers involved in resistance to Fusarium oxysporum f. sp. ciceris race 0 in chickpea. Plant Breed 122: 188–191.CrossRefGoogle Scholar
  134. Sandhu, J.S. & S.J. ArasaKesary, 2003. Evaluation of chickpea genotypes for cold tolerance. Int Chickpea Pigeonpea Newslett 10: 9–12.Google Scholar
  135. Santra, D.K., M. Tekeoglu, M. Ratnaparkhe, W.J. Kaiser & F.J. Muehlbauer, 2000. Identification and mapping of QTLs conferring resistance to ascochyta blight in chickpea. Crop Sci 40, 1606–1612.CrossRefGoogle Scholar
  136. Savithri, K.S., P.S. Ganapathy & S.K. Sinha, 1980. Sensitivity to low tolerance in pollen germination and fruit set in Cicer arietinum L. J Exp Bot 31: 475–481.Google Scholar
  137. Saxena, N.P., 1987. Screening for adaptation to drought: Case studies with chickpea and pigeonpea. In: Adaptation of chickpea and pigeonpea to abiotic stresses. Proceedings of Consultant’s Workshop, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, AP, India, pp. 63–76.Google Scholar
  138. Saxena, N.P., 2003. Management of drought in chickpea–A holistic approach. In: N.P. Saxena (Ed.), Management of Agricultural Drought–Agronomic and Genetic Options, pp. 103–122. Oxford & IBH Publising Co. Pvt. Ltd., New Delhi, India.Google Scholar
  139. Saxena, N.P., L. Krishnamurthy & C. Johansen, 1993. Registration of a drought resistant chickpea germplasm. Crop Sci 33: 1424.CrossRefGoogle Scholar
  140. Schadt, E.E., S.A. Monks, T.A. Drake, A.J. Lusis, N. Che, V. Colinayo, T.G. Ruff, S.B. Milligan J.R. Lamb, G. Cavet, P.S. Linsley, M. Mao, R.B. Stoughton & S.H. Friend, 2003. Genetics of gene expression surveyed in maize, mouse and man. Nature 422: 297–302.PubMedCrossRefGoogle Scholar
  141. Serraj, R., L. Krishnamurthy & H.D. Upadhyaya, 2004. Screening chickpea mini-core germplasm for tolerance to soil salinity. Int Chickpea Pigeonpea Newslett 11: 29–32.Google Scholar
  142. Sethi, S.C., D.E. Byth, C.L.L. Gowda & J.M. Green, 1981. Photoperiodic response and accelerated generation turnover in chickpea. Field Crops Res 4: 215–225.CrossRefGoogle Scholar
  143. Shan, F., H. Clarke, G.J. Yang, J. Plummer & K.H.M. Siddique, 2004. Development of DNA fingerprinting keys for discrimination of Cicer equinospermum (PH Davis) accessions using AFLP markers. Australian Journal of Agricultural Research 55: 947–952.CrossRefGoogle Scholar
  144. Shan, F., H. Clarke, J. Plummer, G. Yan & K.H.M. Siddique, 2005. Geographical patterns of genetic variation in the world collections of wild annual Cicer characterised by amplified fragment length polymorphisms. Theor Appl Genet, 110: 381–391.PubMedCrossRefGoogle Scholar
  145. Sharma, H.C., G. Pampathy, S.K. Lanka & T.J. Ridsdill-Smith, 2005. Antibiosis mechanism of resistance to legume pod borer, Helicoverpa armigera in annual wild relatives of chickpeas. Euphytica 142: 107–117.Google Scholar
  146. Sharma, K.D., P. Winter, G. Kahl & F.J. Muehlbauer, 2004. Molecular mapping of Fusarium oxysporum f. sp. ciceris race 3 resistance gene in chickpea. Theor Appl Genet 108: 1243–1248.PubMedCrossRefGoogle Scholar
  147. Shen, K.A., B.C. Meyers, N. Islam-Faridi, D.M. Stelly & R.W. Michelmore, 1998. Resistance gene candidates identified using PCR with degenerate oligonucleotide primers map to resistance gene clusters in lettuce. Mol Plant Microbe Interact 11: 815–823.PubMedGoogle Scholar
  148. Siddique, K.H.M., S.P. Loss & B.D. Thomson, 2003. Cool season grain legumes in dryland Mediterranean environments of Western Australia: Significance of early flowering. In: N.P. Saxena (Ed.), Management of Agricultural Drought, pp. 151–161. Science Publishers, Enfield (NH), USA.Google Scholar
  149. Siddique, K.H.M. & R.H. Sedgley, 1986. Chickpea (Cicer arietinum L.), a potential grain legume for South-Western Australia: Seasonal growth and yield. Aust J Agric Res 37: 245–261.CrossRefGoogle Scholar
  150. Singh, K.B., 1987. Chickpea breeding. In: M.C. Saxena & K.B. Singh (Eds.), The Chickpea, pp. 127–162. CAB International, Wallingford, UK.Google Scholar
  151. Singh, K.B., 1993. Problems and prospects of stress resistance breeding in chickpea. In: K.B. Singh & M.C. Saxena (Eds.), Breeding for Stress Tolerance in Cool Season Food Legumes, pp. 17–37. Wiley, Chichester.Google Scholar
  152. Singh, K.B. & M.V. Reddy, 1983. Inheritance of resistance to ascochyta blight in chickpea. Crop Sci 23: 9–10.CrossRefGoogle Scholar
  153. Singh, K.B. & M.V. Reddy, 1996. Improving chickpea yield by incorporating resistance to ascochyta blight. Theor Appl Genet 92: 509–515.CrossRefGoogle Scholar
  154. Singh, K.B., G.C. Hawtin, Y.L. Nene & M.V. Reddy, 1981. Resistance in chickpeas to Ascochyta rabiei. Plant Dis 65: 586–587.CrossRefGoogle Scholar
  155. Singh, K.B., L. Holly & G. Bejiga, 1991. A Catalog of Kabuli Chickpea Germplasm. International Center for Agricultural Research in Dry Areas, Aleppo, Syria.Google Scholar
  156. Singh, K.B., R.S. Malhotra, M.H. Halila, E.J. Knights & M.M. Verma., 1994. Current status and future strategy in breeding chickpea for resistance to biotic and abiotic stresses. Euphytica, 73: 137–149.CrossRefGoogle Scholar
  157. Singh, K.B., R.S. Malhotra & M.C. Saxena, 1995. Additional sources of tolerance to cold in cultivated and wild Cicer species. Crop Sci 35: 1491–1497.CrossRefGoogle Scholar
  158. Singh, K.B., R.S. Malhotra, M.C. Saxena & G. Bejiga, 1997. Superiority of winter sowing over traditional spring sowing of chickpea in the Mediterranean region. Agron J 89: 112–118.CrossRefGoogle Scholar
  159. Singh, K.B., B. Ocampo & L.D. Robertson, 1998. Diversity for abiotic and biotic stress resistance in the wild annual Cicer species. Genet Resour Crop Evol 45: 9–17.CrossRefGoogle Scholar
  160. Singh, K.B., M.V. Reddy & M.P. Haware., 1992. Breeding for resistance to ascochyta blight in chickpea. In: K.B. Singh & M.C. Saxena (Eds.), Disease Resistance in Chickpea, pp. 23–54. ICARDA, Aleppo, Syria.Google Scholar
  161. Srinivasan, A., C. Johansen & N.P. Saxena, 1998. Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L.): Characterisation of stress and genetic variation in pod set. Field Crops Res 57: 181–193.CrossRefGoogle Scholar
  162. Srinivasan, A., N.P. Saxena & C. Johansen, 1999. Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L.): Genetic variation in gamete development and function. Field Crops Res 60: 209–222.CrossRefGoogle Scholar
  163. Staginnus, C., B. Hüttel, C. Desel, T. Schmidt & G. Kahl, 2001. A PCR-based assay to detect En/Spm-like transposon sequences in plants. Chromosome Res 9: 591–605.PubMedCrossRefGoogle Scholar
  164. Staginnus, C., P. Winter, C. Desel, T. Schmidt & G. Kahl, 1999. Molecular structure and chromosomal localization of major repetitive DNA families in the chickpea (Cicer arietinum L.) genome. Plant Mol Biol 39: 1037–1050PubMedCrossRefGoogle Scholar
  165. Summerfield, R.J., F.R. Minchin, E.H. Roberts & P. Hadley, 1981. Adaptation to contrasting aerial environment in chickpea (Cicer arietinum L.). Tropic Agric 58: 97–113.Google Scholar
  166. Tekeoglu, M., D.K. Santra, W.J. Kaiser & F.J. Muehlbauer, 2000a. Ascochyta blight resistance inheritance in three chickpea recombinant inbred line populations. Crop Sci 40: 1251–1256.CrossRefGoogle Scholar
  167. Tekeoglu, M., A. Tullu, W.J. Kaiser & F.J. Muehlbauer, 2000b. Inheritance and linkage of two genes that confer resistance to fusarium wilt in chickpea. Crop Sci 40: 1247–1251.CrossRefGoogle Scholar
  168. Tekeoglu, M., P.N. Rajesh & F.J. Muehlbauer, 2002. Integration of sequence tagged microsatellite sites to the chickpea genetic map. Theor Appl Genet 105: 847–854.PubMedCrossRefGoogle Scholar
  169. Tewari, S.K. & M.P. Pandey, 1986. Genetics of resistance to ascochyta blight in chickpea (Cicer arietinum L.). Euphytica 35: 211–215.CrossRefGoogle Scholar
  170. Tiemann, K., D. Inze, M. Van Montagu & W. Barz, 1991. Pterocarpan phytoalexin biosynthesis in elicitor-challenged chickpea (Cicer arietinum L.) cell cultures. Purification, characterization and cDNA cloning of NADPH: Isoflavone oxidoreductase. Eur J Biochem 15: 751–757.Google Scholar
  171. Tullu, A., F.J. Muehlbauer, C.J. Simon, M.S. Mayer, J. Kumar, W.J. Kaiser & J.M. Kraft, 1998. Inheritance and linkage of a gene for resistance to race 4 of fusarium wilt and RAPD markers in chickpea. Euphytica 102: 227–232.CrossRefGoogle Scholar
  172. Turner, N.C., G.C. Wright, & K.H.M. Siddique, 2001. Adaptation of grain legumes (pulses) to water-limited environments. Adv Agron 71: 123–231.Google Scholar
  173. Udupa, S.M. & M. Baum, 2003. Genetic dissection of pathotype-specific resistance to ascochyta blight resistance in chickpea (Cicer arietinum L.) using microsatellite markers. Theor Appl Genet 106: 1196–1202.PubMedGoogle Scholar
  174. USDA-ARS, Beltville., 2004. Phytochemical Databases: Chickpea. http://www.ars-grin.gov/cgi-bin/duke/ethnobot.pl.
  175. van der Maesen, L.J.G., 1972. Cicer L., a monograph of the genus, with an special reference to the chickpea (Cicer arietinum L.), its ecology and cultivation. In: H. Veenmam & Q. Zonen (Eds.), 342 pp. Mededlingen Landbouwhogeschool (Communication Agricultural University), Wageningen.Google Scholar
  176. van der Maesen, L.J.G. & R.P.S. Pundir, 1984. Availability and use of wild Cicer germplasm. Plant Genet Resour Newslett 57: 19–24.Google Scholar
  177. van Rheenen, H.A., M.V. Reddy, J. Kumar & M.P. Haware, 1992. Breeding for resistance to soil-borne diseases in chickpea. In: K.B. Singh and M.C. Saxena (Eds.), Disease Resistance in Chickpea, pp. 55–70. ICARDA, Aleppo, Syria.Google Scholar
  178. Vlácilová, K., D. Ohri, J. Vrána, J. Cihaliková, M. Kubaláková, G. Kahl & J. Dolezel, 2002. Development of flow cytogenetics and physical genome mapping in chickpea (Cicer arietinum L.). Chromosome Res 10: 695–706.PubMedCrossRefGoogle Scholar
  179. Williams, P.C. & U. Singh, 1987. The Chickpea–Nutritional quality and the evaluation of quality. In: M.C. Saxena & K.B. Singh (Eds.), The Chickpea, pp. 329–356. CAB International, Wallingford, UK.Google Scholar
  180. Winter, P., T. Pfaff, S.M. Udupa, B. Hüttel, P.C. Sharma, S. Sahim, R. Arreguin-Espinoza, F. Weigand, F.J. Muehlbauer & G. Kahl, 1999. Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol Gen Genet 262: 90–101.PubMedCrossRefGoogle Scholar
  181. Winter, P., A.-M. Benko-Iseppon, B. Hüttel, M. Ratnaparkhe, A. Tullu, G. Sonnante, T. Pfaff, M. Tekeoglu, D. Santra, V.J. Sant, P.N. Rajesh, G. Kahl & F.J. Muehlbauer, 2000. A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum × C. reticulum cross: Localization of resistance genes for fusarium wilt races 4 and 5. Theor Appl Genet 101: 1155–1163.CrossRefGoogle Scholar
  182. Winter, P., C. Staginnus, P.C. Sharma & G. Kahl, 2003. Organisation and genetic mapping of the chickpea genome. In: P.K. Jaiwal & R.P. Singh (Eds.), Improvement Strategies of Leguminosae Biotechnology, pp. 303–351. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  183. Yang, H., J.G. Boersma, M. You, B.J. Buirchell & M.W. Sweetingham, 2004. Development and implementation of a sequence-specific PCR marker linked to a gene conferring resistance to anthracnose disease in narrow-leafed lupin (Lupinus angustifolius L.). Mol Breed 14: 145–151.CrossRefGoogle Scholar
  184. Yang, H., M.W. Sweetingham, W.A. Cowling & P.M.C. Smith, 2001. DNA fingerprinting based on microsatellite-anchored fragment length polymorphisms, and isolation of sequence-specific PCR markers in lupin (Lupinus angustifolius L.). Mol Breed 7: 203–209.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Teresa Millan
    • 1
  • Heather J. Clarke
    • 2
  • Kadambot H. M. Siddique
    • 2
  • Hutokshi K. Buhariwalla
    • 3
  • Pooran M. Gaur
    • 3
  • Jagdish Kumar
    • 3
    • 4
  • Juan Gil
    • 1
  • Guenter Kahl
    • 5
    • 6
  • Peter Winter
    • 5
    • 6
  1. 1.Dpto GenéticaUniv. de CórdobaCórdobaSpain
  2. 2.Centre for Legumes in Mediterranean Agriculture, Faculty of Natural and Agricultural SciencesThe University of Western AustraliaCrawleyAustralia
  3. 3.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)PatancheruIndia
  4. 4.Beans-for-Health Research FoundationInkerman (Near Ottawa)Canada
  5. 5.Plant Molecular Biology, Frankfurt Innovation Centre BiotechnologyUniversity of FrankfurtFrankfurtGermany
  6. 6.GenXProFrankfurt Innovation Centre BiotechnologyFrankfurtGermany

Personalised recommendations