Advertisement

Euphytica

, Volume 147, Issue 1–2, pp 67–80 | Cite as

Faba bean breeding for resistance against biotic stresses: Towards application of marker technology

  • A. M. TorresEmail author
  • B. Román
  • C. M. Avila
  • Z. Satovic
  • D. Rubiales
  • J. C. Sillero
  • J. I. Cubero
  • M. T. Moreno
Article

Summary

Faba beans are adversely affected by numerous fungal diseases leading to a steady reduction in the cultivated area in many countries. Major diseases such as Ascochyta blight (Ascochyta fabae), rust (Uromyces viciae-fabae), chocolate spot (Botrytis fabae), downy mildew (Peornospora viciae) and foot rots (Fusarium spp.) are considered to be the major constraints to the crop. Importantly, broomrape (Orobanche crenata), a very aggressive parasitic angiosperm, is the most damaging and widespread enemy along the Mediterranean basin and Northern Africa. Recent mapping studies have allowed the identification of genes and QTLs controlling resistance to some of these diseases. In case of broomrape, 3 QTLs explained more than 70% of the phenotypic variance of the trait. Concerning Ascochyta, two QTLs located in chromosomes 2 and 3 explained 45% of variation. A second population sharing the susceptible parental line also revealed two QTLs, one of them likely sharing chromosomal location and jointly contributing with a similar percentage of the total phenotypic variance. Finally, several RAPD markers linked to a gene determining hypersensitive resistance to race 1 of the rust fungus U. viciae-fabae have also been reported. The aim of this paper is to review the state of the art of gene technology for genetic improvement of faba bean against several important biotic stresses. Special emphasis is given on the application of marker technology, and Quantitative Trait Loci (QTL) analysis for Marker-Assisted Selection (MAS) in the species. Finally, the potential use of genomic tools to facilitate breeding in the species is discussed. The combined approach should expedite the future development of lines and cultivars with multiple disease resistance, one of the top priorities in faba bean research programs.

Key Words

genome mapping genomics marker-assisted selection quantitative trait loci resistance Vicia faba 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, F.H. & C.C. Bernier, 1985. Evaluation components of resistance to Ascochyta fabae in faba beans (Vicia faba). Phytopathology 75: 962.Google Scholar
  2. Avila, C.M., J.C. Sillero, D. Rubiales, M.T. Moreno & A.M. Torres, 2003. Identification of RAPD markers linked to Uvf-1 gene conferring hypersensitive resistance against rust (Uromyces viciae-fabae) in Vicia faba L.Theor Appl Genet 107(2): 353–358.Google Scholar
  3. Avila, C.M., Z. Satovic, J.C. Sillero, D. Rubiales, M.T. Moreno & A.M. Torres, 2004. Isolate and organ-specific QTLs for ascochyta blight resistance in faba bean. Theor Appl Genet 108: 1071–1078.PubMedCrossRefGoogle Scholar
  4. Bassiri, A. & I. Rouhani, 1977. Identification of broad bean cultivars based on isoenzyme patterns. Euphytica 26: 279–286.CrossRefGoogle Scholar
  5. Bennett, M.D. & J.B. Smith, 1976. Nuclear DNA amounts in angiosperms. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 274: 227–274.Google Scholar
  6. Bernier, C.C. & R.L. Conner, 1982. Breeding for resistance to faba bean rust. In: G. Hawtin & C. Webb (Eds.), Faba Bean Improvement, pp. 251–257. Martinus Nijhoff, The Hague, The Netherlands.Google Scholar
  7. Bond, D.A. & M.H. Poulsen, 1983. Pollination. In: P.D. Hebblethwaite (Ed.), The Faba Bean (Vicia faba L.), pp. 77–101. Butterworths, London, UK.Google Scholar
  8. Bond, D.A. & M. Pope, 1980. Ascochyta fabae on winter beans (Vicia faba) pathogen spread and variation in host resistance. Plant Pathology 29: 59–65.Google Scholar
  9. Bond, D.A., D.A. Lawes, G.C. Hawtin, M.C. Saxena & J.S. Stephens, 1985. Faba bean (Vicia faba L.). In: R.J. Summerfield & E.H. Roberts (Eds.), Grain Legume Crops, pp. 199–265. William Collins Sons Co. Ltd., London, UK.Google Scholar
  10. Bond, D.A., G.J. Jellis, G.G. Rowland, J. Le Guen, L.D. Robertson, S.A. Khalil & L. Li-Juan, 1994. Present status and future strategy in breeding faba beans (Vicia faba L.) for resistance to biotic and abiotic stresses. Euphytica 73: 151–166.CrossRefGoogle Scholar
  11. Borevitz, J.O. & J. Chory, 2004. Genomics tools for QTL analysis and gene discovery. Current Opinion Plant Biol 7: 132–136.CrossRefGoogle Scholar
  12. Böttinger, P., A. Steinmetz, O. Schieder & T. Pickardt, 2001. Agrobacterium-mediated transformation of Vicia faba. Mol Breed 8: 243–254.CrossRefGoogle Scholar
  13. Bouhassan, A., M. Sadiki & B. Tivoli, 2004. Evaluation of a collection of faba bean (Vicia faba L.) genotypes originating from the Maghreb for resistance to chocolate spot (Botrytis fabae) by assessment in the field and laboratory. Euphytica 135: 55–62CrossRefGoogle Scholar
  14. Cabrera, A., J.I. Cubero & A. Martín, 1989. Genetic mapping using trisomics in Vicia faba L. FABIS Newsletter 23: 5–7.Google Scholar
  15. Choi, H.K., D. Kim, T. Uhm, E. Limpens, H. Lim, P. Kalo, et al., 2004. A sequence-based genetic map of Medicago truncatula and comparison of marker co-linearity with Medicago sativa. Genetics 166: 1463–1502.PubMedCrossRefGoogle Scholar
  16. Conner, R.L. & C.C. Bernier, 1982. Inheritance of rust resistance in inbred lines of Vicia faba. Phytopathology 72: 1555–1557.Google Scholar
  17. Cook, D.R., 1999. Medicago truncatula-a model in the making!. Current Opinion Plant Biol 2: 301–304.CrossRefGoogle Scholar
  18. Cubero, J.I., 1974. On the evolution of Vicia faba L. Theor Appl Genet 45: 4751.CrossRefGoogle Scholar
  19. Cubero, J.I., 1983. Parasitic diseases in Vicia faba L. with special reference to broomrape (Orobanche crenata Forsk.). In: P.D. Hebblethwaite (Ed.), The Faba Bean (Vicia faba L.), pp. 493–519. Butterworths, London, UK.Google Scholar
  20. Cubero, J.I., 1991. Breeding for resistance to Orobanche species: A review. In: K. Wegmann & L.J. Musselman (Eds.), Progress in Orobanche Research, pp. 257–277. Eberhard-Karls-Universität, Tübingen, Germany.Google Scholar
  21. Cubero, J.I. & L. Hernández, 1991. Breeding faba bean (Vicia faba L.) for resistance to Orobanche crenata Forsk. Options Méditerranéennes - Série Séminaires, 10: 51–57.Google Scholar
  22. Cubero, J.I. & M.T. Moreno, 1999. Studies on resistance to Orobanche crenata in Vicia faba. In: J.I. Cubero, M.T. Moreno, D. Rubiales & J.C. Sillero (Eds.), Resistance to Broomrape, the State of the Art, pp. 9–15. DGIFA, Junta de Andalucía, Sevilla, SP.Google Scholar
  23. Dolezel, J., M.A. Lysak, M. Kubalakova, H. Simkova, J. Macas & S. Lucretti, 2001. Sorting of plant chromosomes. In: Z. Darynkiewicz, H.A. Crissman & J.P. Robinson (Eds.), Methods in Cell Biology. Vol. 64, 3rd ed. Academic Press, San Diego, CA, pp. 3–31.Google Scholar
  24. Duc, G., 1997. Faba bean (Vicia faba L.) Field Crops Res 53: 99–109.CrossRefGoogle Scholar
  25. Emeran, A.A. & D. Rubiales, 2001. Effects of eleven fungicides on faba bean rust (Uromyces viciae-fabae) control. In: AEP (Ed.), 4th European Conference on Grain Legumes. Towards the Sustainable Production of Healthy Food, Feed and Novel Products, pp. 261, 8–12 July, Cracow, Poland.Google Scholar
  26. Emeran, A.A., J.C. Sillero & D. Rubiales, 2001. Physiological specialisation of Uromyces viciae-fabae. In: AEP (Ed.), 4th European Conference on Grain Legumes. Towards the Sustainable Production of Healthy Food, Feed and Novel Products, pp. 263, 8–12 July, Cracow, Poland.Google Scholar
  27. Erith, A.G., 1930. The inheritance of colour, size, form of seeds and of flower colour in Vicia faba L. Genetica 13: 477–510.CrossRefGoogle Scholar
  28. Evans, J., 1961. Chromatid aberrations induced by gamma irradiation. I. The structure and frequency of chromatid interchanges in diploid and tetraploid cells of Vicia faba. Genetics 46: 257–275.PubMedGoogle Scholar
  29. FAOSTAT, www.fao.org, 2004.Google Scholar
  30. Foster-Hartnett, D., J. Mudge, D. Danesh, H. Yan, D. Larsen, R. Denny & N.D. Young, 2002. Comparative genome analysis of sequences sampled from a small region on soybean molecular linkage group ‘G’. Genome 45: 634–645.PubMedCrossRefGoogle Scholar
  31. Frugoli, J. & J. Harris, 2001. Medicago truncatula on the move!. Plant Cell 13(3): 458–463.PubMedCrossRefGoogle Scholar
  32. Frugoli, J.A., K. Dong-Jin, P. Hui-Mei, N. Young-Woo, P. Varma & D.R. Cook, 1999. Why Medicago truncatula? The characteristics of a model system with emphasis on suitability for map-based cloning of nodulation related genes. Plant & Animal Genome VII Conference. January 17–21, San Diego, CA.Google Scholar
  33. Fuchs, J. & I. Schubert, 1995. Localization of seed protein genes on metaphase chromosomes of Vicia faba via fluorescence in situ hybridization. Chromosome Res 3: 94–100.PubMedCrossRefGoogle Scholar
  34. Fuchs, J., U. Pich., A. Meister & I. Schubert, 1994. Differentiation of field bean heterochromatin by in situ hybridization with a repeated FokI sequence. Chromosome Res 2: 25–28.PubMedCrossRefGoogle Scholar
  35. Furgal-Wegrzycka, H., Z. Tomaszewski & J. Gonerska, 1985. Assessment of the susceptibility of Polish and foreign varieties of horse beans (Vicia faba L.) to pathogenic fungi. Rev Plant Pathol 64: 279.Google Scholar
  36. Gao, L.F., R.L. Jing, N.X. Huo, Y. Li, X.P. Li, R.H. Zhou, X.P. Chang, J.F. Tang, Z.Y. Ma & J.Z. Jia, 2004. One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theor Appl Genet 108:1392–1400.PubMedCrossRefGoogle Scholar
  37. Gates, P. & D. Boulter, 1979. The use of seed isoenzymes as an aid to the breeding of field beans (Vicia faba L.). New Phytologist 83: 783–791.CrossRefGoogle Scholar
  38. Gates, P. & D. Boulter, 1980. The use of pollen isoenzymes as an aid to the breeding of field beans (Vicia faba L.). New Phytologist 84: 501–504.CrossRefGoogle Scholar
  39. Gaunt, R.E., 1983. Shoot diseases caused by fungal pathogens. In: P.D. Hebblethwaite (Ed.), The Faba Bean (Vicia faba L.), pp. 463–492. Butterworths, London, UK.Google Scholar
  40. González, J.A., 1985. Tetraploidia, aneuploidia y asinapsis en Vicia faba L. PhD. Thesis. Department of Genetics, University of Córdoba, Spain.Google Scholar
  41. González, J.A. & A. Martín, 1983. Development, use and handling of trisomics in Vicia faba L. FABIS Newsletter 6: 10–11.Google Scholar
  42. Gressel, J., A. Hanafi, G. Head, W. Marasas, A.B. Obilana, J. Ochanda, T. Souissi & G. Tzotzos, 2004. Major heretofore intractable biotic constraints to African food security that may be amenable to novel biotechnological solutions. Crop Protection 23: 661–689.CrossRefGoogle Scholar
  43. Hanelt, P., 1972. Zur Geschichte des Anbaues von Vicia faba L. und ihrer verschiedenen Formen. Kulturpflanze 20: 209–223.CrossRefGoogle Scholar
  44. Hanounik, S.B., 1980. Effect of chemical treatments and host genotypes on disease severity/yield relationships of Ascochyta blight in faba beans. FABIS Newsletter 2: 50.Google Scholar
  45. Hanounik, S.B., 1982. Resistance in faba beans to chocolate spot. FABIS Newsletter 5: 24–26.Google Scholar
  46. Hanounik, S.B. & L.D. Robertson, 1988. New sources of resistance in Vicia faba to chocolate spot caused by Botrytis fabae. Plant Disease 72: 696–698.Google Scholar
  47. Hanounik, S.B. & L.D. Robertson, 1989. Resistance in Vicia faba germplasm to blight caused by Ascochyta fabae. Plant Disease 73: 202–205.Google Scholar
  48. International Center for Agricultural Research in the Dry Areas (ICARDA), 1981. Genetic Variation within Vicia faba. ICARDA, Aleppo, Syria.Google Scholar
  49. International Center for Agricultural Research in the Dry Areas (ICARDA), 1986. Third conspectus of genetic variation within Vicia faba. ICARDA, Aleppo, Syria.Google Scholar
  50. International Center for Agricultural Research in the Dry Areas (ICARDA), 1987. Faba Bean Pathology Progress Report 1986–1987. In: Food Legume Improvement Program. ICARDA, Aleppo, Syria.Google Scholar
  51. Jellis, G.J., G. Lockwood & R.G. Aubury, 1985. Phenotypic influences on the incidence of infection by Ascochyta fabae in spring varieties of faba beans (Vicia faba). Plant Pathol 34: 347–352.Google Scholar
  52. Johnston, J.S., M.D. Bennett, A. Lane Rayburn, D.W. Galbraith & H.J. Price, 1999. Reference standards for determination of DNA content of plant nuclei. Am J Bot 86: 609–613.PubMedCrossRefGoogle Scholar
  53. Kaser, H.R. & A.M. Steiner, 1983. Subspecific classification of Vicia faba L. by protein and isozyme patterns. FABIS Newsletter 7: 19–20.Google Scholar
  54. Khalil, S. & W. Erskine, 1999. Breeding for Orobanche resistance in faba bean and lentil. In: J.I. Cubero, M.T. Moreno, D. Rubiales & J.C. Sillero (Eds.), Resistance to broomrape, the state of the art, pp. 63–76. DGIFA, Junta de Andalucía, Sevilla, SP.Google Scholar
  55. Khalil, S.A., A.M. Nassib & H.A. Mohammed, 1985. Identification of some sources of resistance to diseases in faba beans II – Rust (Uromyces fabae). FABIS Newsletter 11: 18–20.Google Scholar
  56. Kharbanda, P.D. & C.C. Bernier, 1980. Cultural and pathogenic variability among isolates of Ascochyta fabae. Can J Plant Pathol 2: 139–142.CrossRefGoogle Scholar
  57. Kharrat, M., 1999. Orobanche research activities on faba bean in Tunisia. In: J.I. Cubero, M.T. Moreno, D. Rubiales & J.C. Sillero (Eds.), Resistance to Broomrape, the State of the Art, pp. 77–81. DGIFA, Junta de Andalucía, Sevilla, SP.Google Scholar
  58. Kharrat, M., C. Onfroy, B. Tivoli & H. Halila, 1997. Caractérisation morphologique et biologique des souches tunisiennes d’Ascochyta fabae, responsable de l’anthracnose des fèves. In: INRA (Eds.), Les légumineuses alimentaires méditerranéennes, pp. 207–219. 20–22 février, Rennes, France.Google Scholar
  59. Kohpina, S., R. Knight & F.L. Stoddard, 1999. Variability of Ascochyta fabae in South Australia. Aust J Agric Res 50: 1475–1481.CrossRefGoogle Scholar
  60. Kohpina, S., R. Knight & F.L. Stoddard, 2000. Genetics of resistance to Ascochyta blight in two populations of faba bean. Euphytica 112: 101–107.CrossRefGoogle Scholar
  61. Ladizinsky, G., 1975. Seed protein electrophoresis of the wild and cultivated species of selection Faba of Vicia. Euphytica 24: 785–788.CrossRefGoogle Scholar
  62. Lander, E.S. & D. Bostein, 1989. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.PubMedGoogle Scholar
  63. Lawes, D.A., D.A. Bond & M.H. Poulsen, 1983. Classification, origin, breeding methods and objectives. In: P.D. Hebblethwaite (Ed.), The Faba Bean (Vicia faba L.), pp. 23–67. Butterworths, London, England.Google Scholar
  64. Lawson, W.R., K.C. Goulter, R.J. Henry, G.A. Kong & J.K. Kochman, 1998. Marker-assisted selection for two rust resistance genes in sunflower. Mol Breed 2: 227–234.CrossRefGoogle Scholar
  65. Macas, J., W. Weschke, H. Baumlein, U. Pich, A. Houben, U. Wobus & I. Schubert, 1993a. Localization of vicilin genes via polymerase chain reaction on microisolated field bean chromosomes. Plant J 3: 883–886.CrossRefGoogle Scholar
  66. Macas, J., J. Dolezel, S. Lucretti, U. Pich, A. Meister, J. Fuchs & I. Schubert, 1993b. Localization of seed genes on flow-sorted field bean chromosomes. Chromosome Res 1: 107–115.CrossRefGoogle Scholar
  67. Macas, J., G. Gualberti, M. Nouzová, P. Samec, S. Lucretti & J. Dolezel, 1996. Construction of chromosome-specific DNA libraries covering the whole genome of field bean (Vicia faba L.). Chromosome Res 4: 531–539.PubMedCrossRefGoogle Scholar
  68. Mancini, R., C. De Pace, G.T. Scarscia Mugnozza, V. Deire & D. Vittori, 1989. Isoenzyme gene markers in Vicia faba L. Theor Appl Genet 77: 657–667.CrossRefGoogle Scholar
  69. Marcellos, H., K.J. Moore & A. Nikandrow, 1995. Influence of foliar-applied fungicides on seed yield of faba bean (Vicia faba L.) in Northern New South Wales. Aust J Exper Agri 35: 97–102.CrossRefGoogle Scholar
  70. Marek, L.F., J. Mudge, L. Darnielle, D. Grant, N. Hanson, M. Paz, Y. Huihuang, R. Denny, K. Larson, D. Foster-Hartnett, A. Cooper, D. Danesh, D. Larsen, T. Schmidt, R. Staggs, J.A. Crow, E. Retzel, N.D. Young & R.C. Shoemarker, 2001. Soybean genomic survey: BAC-end sequences near RFLP and SSR markers. Genome 44: 472–581.CrossRefGoogle Scholar
  71. Martín, A. & P. Barceló, 1984. The cytology and morphology of Vicia faba trisomics. In: G.P. Chapman & S.A. Tarawali (Eds.), Systems for Cytogenetic Analysis in Vicia faba L., pp. 63–76. Martinus Nijhoff/Dr W. Junk Publishers, The Hague, The Netherlands.Google Scholar
  72. Michaelis, A. & R. Rieger, 1959. Strukturheterozygotie bei Vicia faba. Züchter 29: 354–361.CrossRefGoogle Scholar
  73. Muratova, V., 1931. Common beans (Vicia faba). Bull Appl Bot Genet Plant Breed Suppl 50.Google Scholar
  74. Murray, D.C. & D.R. Walters, 1992. Increased photosynthesis and resistance to rust infection in upper, uninfected leaves of rusted broad bean (Vicia faba L.). New Phytol 120: 235–242.CrossRefGoogle Scholar
  75. Nassib, A.M., A.A. Ibrahim & S.A. Khalil, 1982. Breeding for resistance to Orobanche. In: G. Hawtin, & C. Webb (Eds.), Faba bean improvement, pp. 199–206. Martinus Nijhoff, The Hague, The Netherlands.Google Scholar
  76. Ockey, C.H., 1957. A quantitative comparison between the cytotoxic effects produced by proflavine, acetylethleneimine and triethylene melamine in root tips of Vicia faba. J Genet 55: 525–549.Google Scholar
  77. Ondrej, M., 1993. Response of resistant lines of horse bean to pathogenous fungus Ascochyta fabae Speg. Plant Gen Resour 2: 45–48.Google Scholar
  78. Parker, C., 1991. Protection of crops against parasitic weeds. Crop Protection 10: 6–22.CrossRefGoogle Scholar
  79. Peat, W.E. & J.Y. Adham, 1984. The use of isozyme genes as markers in the population genetics of Vicia faba L. In: G.P. Chapman & S.A. Tarawai (Eds.), Systems for cytogenetic analysis in Vicia faba L., pp. 109–117. Martinus Nijhoff/Dr W. Junk Publishers, The Hague, The Netherlands.Google Scholar
  80. Pedrosa, A., N. Sandal, J. Stougaard, D. Schweizer & A. Bachmair, 2002. Chromosomal map of the model legume Lotus japonicus. Genetics 161: 1661–1672.PubMedGoogle Scholar
  81. Perseca, E. & Y. Bobes, 1968. Behaviour of Vicia faba vars. in attacks by the principal diseases. Reva Appl Mycol 47: 597.Google Scholar
  82. Picard, J., 1963. La coloration des téguments du grain chez la féverole (Vicia faba L.). Étude de l’hérédité des différentes colorations. Ann Amélior Plantes 13: 97–117.Google Scholar
  83. Pflieger, S., V. Lefebvre & M. Causse, 2001. The candidate gene approach in plant genetics: A review. Mol Breed 7: 275–291.CrossRefGoogle Scholar
  84. Polignano, G.B. & G. Sonnante, 1992. Characterization of faba bean populations by isoenzyme patterns of GOT and PGI. FABIS Newsletter 31: 12–16.Google Scholar
  85. Polignano, G.B., F. Casulli & P. Uggenti, 1990. Resistance to Uromyces viciae-fabae in Ethiopian and Afghan faba bean entries. Phytopathol Mediter 29: 135–142.Google Scholar
  86. Pozarkova, D., A. Koblizkova, B. Román, A.M. Torres, S. Lucretti, M. Lysak, J. Dolezel & J. Macas, 2002. Development and characterization of microsatellite markers from chromosome 1-specific DNA libraries of Vicia faba. Biol Plantarum 45: 337–345.CrossRefGoogle Scholar
  87. Pritchard, P.R., P.S. Rowe & S. Rossall, 1989. A comparison of infection of resistant and susceptible lines of field bean (Vicia faba) by Ascochyta fabae. Plant Pathol 48: 266–270.Google Scholar
  88. Ramsay, G.R. & B. Pickersgill, 1986. Interspecific hybridisation between Vicia faba and other species of Vicia: Approaches delaying embryo abortion. Biol Zbl 105: 171–179.Google Scholar
  89. Ramsay, G., W. van de Ven, R. Waugh, D.W. Griffiths & W. Powell, 1995. Mapping quantitative trait loci in faba beans. In: AEP (Ed.), 2nd European Conference on Grain Legumes pp. 444–445, Copenhagen, Denmark.Google Scholar
  90. Rashid, K.Y. & C.C. Bernier, 1984. Evaluation of resistance in Vicia faba to two isolates of the rust fungus Uromyces viciae-fabae from Manitoba. Plant Dis 68: 16–18.Google Scholar
  91. Rashid, K.Y. & C.C. Bernier, 1986a. The genetics of resistance in Vicia faba to two races of Uromyces viciae-fabae from Manitoba. Can J Plant Pathol 8: 317–322.CrossRefGoogle Scholar
  92. Rashid, K.Y. & C.C. Bernier, 1986b. Selection for slow rusting in faba bean (Vicia faba L.) to Uromyces viciae-fabae. Crop Prot. 5: 218–224.CrossRefGoogle Scholar
  93. Rashid, K.Y. & C.C. Bernier, 1991. The effect of rust on yield of faba bean cultivars and slow-rusting populations. Can J Plant Sci 71: 967–972.Google Scholar
  94. Rashid, K.Y., C.C. Bernier & R.L. Conner, 1991a. Genetics of resistance in faba bean inbred lines to five isolates of Ascochyta fabae. Can J Plant Pathol 13: 218–225.CrossRefGoogle Scholar
  95. Rashid, K.Y., C.C. Bernier & R.L. Conner, 1991b. Evaluation of faba bean for resistance to Ascochyta fabae and development of host differential for race identification. Plant Dis 75: 852–855.CrossRefGoogle Scholar
  96. Robertson, L.D., 1997. Faba Bean. Chapter 13. In: D. Fuccillo, L. Sears & P. Stapleton (Eds.), Biodiversity in Trust: Conservation and Use of Plant Genetic Resources in CGIAR Centres, pp. 168–180. Cambridge University Press, Cambridge, UK.Google Scholar
  97. Robertson, L.D., K.B. Singh, W. Erskine & Ali M. Abd El Moneim, 1996. Useful genetic diversity in germplasm collections of food and forage legumes from West Asia and North Africa. Germplasm Resour Crop Evol 43: 447–460.Google Scholar
  98. Rojas, M.M., J.C. Sillero, M.T. Moreno & D. Rubiales, 2004. Response to salicylic acid and BTH in relation to the systemic acquired resistance to faba bean rust in Vicia faba. In: AEP (Ed.), 5th European Conference on Grain Legumes. Legumes for the benefit of agriculture, nutrition and the environment: Their genomics, their products and their improvement, pp. 336, 7–11 June, Dijon, France.Google Scholar
  99. Román, B., A.M. Torres, D. Rubiales, J.I. Cubero & Z. Satovic, 2002. Mapping of quantitative trait loci controlling broomrape (Orobanche crenata Forsk.) resistance in faba bean (Vicia faba L.). Genome 45: 1057–1063.Google Scholar
  100. Román, B., D. Rubiales, A.M. Torres, J.I. Cubero & Z. Satovic, 2001. Genetic diversity in Orobanche crenata populations from southern Spain. Theor Appl Genet 103: 1108–1114.CrossRefGoogle Scholar
  101. Román, B., Z. Satovic, C.M. Avila, D. Rubiales, M.T. Moreno & A.M. Torres, 2003. Locating genes associated with Ascochyta fabae resistance in Vicia faba L. Aust J Agric Res 54(1): 85–90.CrossRefGoogle Scholar
  102. Román, B., Z. Satovic, D. Pozarkova, J. Macas, D. Dolezel, J.I. Cubero & A.M. Torres, 2004. Development of a composite map in Vicia faba, breeding applications and future prospects. Theor Appl Genet 108(6): 1079–1088.PubMedCrossRefGoogle Scholar
  103. Satovic, Z., A.M. Torres, & J.I. Cubero, 1996. Genetic mapping of new morphological, isozyme and RAPD markers in Vicia faba L. using trisomics. Theor Appl Genet 93: 1130–1138.CrossRefGoogle Scholar
  104. Satovic, Z., A.M. Torres & J.I. Cubero, 1998. Estimation of linkage in trisomic inheritance. Theor Appl Genet 96: 513–518.CrossRefGoogle Scholar
  105. Schubert, I., R. Rieger & A. Michaelis, 1986. Structural and numerical manipulation of the Vicia faba karyotype: Results and perspectives. Biol Zbl 105: 9–17.Google Scholar
  106. Sillero, J.C. & D. Rubiales, 2002. Histological characterization of the resistance of faba bean to faba bean rust. Phytopathology 92(3): 294–299.PubMedGoogle Scholar
  107. Sillero, J.C., C.M. Avila, M.T. Moreno & D. Rubiales, 2001. Identification of resistance to Ascochyta fabae in Vicia faba germplasm. Plant Breed 120: 529–531.CrossRefGoogle Scholar
  108. Sillero, J.C., D. Rubiales & J.I. Cubero, 1996. Risks of Orobanche screenings based only on final number of emerged shoots per plant. In: M.T. Moreno, J.I. Cubero, D. Berner, D. Joel, L.J. Musselman & C. Parker (Eds.), Advances in Parasitic Plant Research, pp. 652–657, Córdoba, SP.Google Scholar
  109. Sillero, J.C., M.T. Moreno & D. Rubiales, 2000. Characterization of new sources of resistance to Uromyces viciae-fabae in a germplasm collection of Vicia faba. Plant Pathology 49: 389–395.CrossRefGoogle Scholar
  110. Sirks, H.J., 1931. Beiträge zur einer genotypischen Analyse der Ackerbohne, Vicia faba L. Genetica 13: 209–631.CrossRefGoogle Scholar
  111. Sjödin, J., 1971. Induced morphological variation in Vicia faba L. Hereditas 67: 155–180.CrossRefGoogle Scholar
  112. Stoddard, F.L. & I.H.M.H.B. Herath, 2001. Genetic analysis of partial rust resistance in faba beans Aust J Agric Res 52: 73–84.Google Scholar
  113. Suso, M.J. & M.T. Moreno, 1982. Genetic control of electrophoretic variation for Glutamate-oxaloacetate-transaminase in Vicia faba L. FABIS Newsletter 5: 14.Google Scholar
  114. Suso, M.J. & M.T. Moreno, 1986. Isoenzymatic polymorphism of Superoxidase Dismutase (SOD) in Vicia faba and its systematic implication. FABIS Newsletter 16: 3–5.Google Scholar
  115. Suso, M.J., M.T. Moreno & J.I. Cubero, 1993. New isozyme markers in Vicia faba: Inheritance and linkage. Plant Breed 111: 170–172.CrossRefGoogle Scholar
  116. Suso, M.J., Cubero, J.I. & M.T. Moreno, 1995. Outcrossing in two faba fean cultivars under dryland conditions in Spain. Can J Plant Sci 75: 441–443.Google Scholar
  117. Ter Borg, S.J., 1999. Broomrape resistance in faba bean: what do we know ? In: J.I. Cubero, M.T. Moreno, D. Rubiales & J. Sillero (Eds.), Resistance to broomrape, the state of the art, pp. 25–41. DGIFA, Junta de Andalucía, Sevilla, Spain.Google Scholar
  118. Ter Borg, S.J., A. Willemsen, S.A. Khalil, H.A. Saber, J.A.C. Verkleij & A.H. Pierterse, 1994. Field study of the interaction between Orobanche crenata Forsk. and some lines of Vicia faba. Crop Protec 13: 611–616.CrossRefGoogle Scholar
  119. Tivoli, B., B. Reynaud, N. Maurin, P. Berthelem & J. Le Guen, 1987. Comparison of some methods for evaluation of reaction of different faba bean genotypes to Ascochyta fabae. FABIS Newsletter 17: 35–38.Google Scholar
  120. Torres, A.M., N.F. Weeden & A. Martín, 1993. Linkage among isozyme, RFLP and RAPD markers in Vicia faba. Theor Appl Genet 85: 937–945.CrossRefGoogle Scholar
  121. Torres, A.M., Z. Satovic, J. Cánovas, S. Cobos & J.I. Cubero, 1995. Genetics and mapping of new isozyme loci in Vicia faba L. using trisomics. Theor Appl Genet 91: 783–789.CrossRefGoogle Scholar
  122. Torres, A.M., M.C. Vaz Patto, Z. Satovic & J.I. Cubero, 1998. New isozyme loci in Faba bean (Vicia faba L.): Genetic analysis and mapping using trisomics. J Hered 89: 271–274.CrossRefGoogle Scholar
  123. Tÿmchenko, L.F., 1964. Diseases of fodder beans in the Moscow region and the effectiveness of seed disinfectants. Rev Appl Mycol 43: 446.Google Scholar
  124. van de Ven W.T.G, R. Waugh, N. Duncan, G. Ramsay, N. Dow & W. Powell, 1991. Development of a genetic linkage map in Vicia faba using molecular and biochemical techniques. Aspects Appl Biol 27: 49–54.Google Scholar
  125. van Emden, H.F., S.L. Ball & M.R. Rao, 1988. Pest, disease and weed problems in pea, lentil, faba bean and chickpea. In: R.J. Summerfield (Ed.), World Crops: Cool Season Food Legumes, pp. 519–534. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  126. Vaz Patto, M.C., A.M. Torres, A. Koblizkova, J. Macas & J.I. Cubero, 1999. Development of a genetic composite map of Vicia faba using F2 populations derived from trisomic plants. Theor Appl Genet 98: 736–743.CrossRefGoogle Scholar
  127. Williams, P.F., 1978. Growth of broad beans infected by Uromyces viciae-fabae. Annals of Appl Biol 90: 329–334.CrossRefGoogle Scholar
  128. Yamamoto, K., 1975a. Estimation of genetic homogeneity by isozymes from interspecific hybrids of Vicia. I. Amylase isozyme patterns in the hybrid progenies between Vicia pilosa and Vicia macrocarpa. Jpn J Breed 25: 60–64.Google Scholar
  129. Yamamoto, K., 1975b. Estimation of genetic homogeneity by isozymes from interspecific hybrids of Vicia. II. Amylase isozyme patterns in the hybrid progenies between Vicia amphicarpa and V. macrocarpa. Jpn J Breed 29: 59–65.Google Scholar
  130. Yamamoto, K. & U. Plitmann, 1980. Isozyme polymorphism in species of the genus Vicia (Leguminosae). Jpn J Genet 55: 151–164.Google Scholar
  131. Yan, H., J. Mudge, D.J. Kim, R.C. Shoemarker, D.R. Cook & N.D. Young, 2003. Estimates of conserved microsynteny among the genomes of Glycine max, Medicago truncatula and Arabidopsis thaliana. Theor Appl Genet 106: 1256–1265.PubMedGoogle Scholar
  132. Yarwood, C.E., 1956. Cross protection with two rust fungi. Phytopathology 46: 540–544.Google Scholar
  133. Yeoman, D.P., D.H. Lapwood & J. McEwen, 1987. Effects of a range of fungicides used to control rust (Uromyces viciae-fabae) on spring-sown field beans (Vicia faba) in the UK. Crop Protection 6: 90–94.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • A. M. Torres
    • 1
    Email author
  • B. Román
    • 1
  • C. M. Avila
    • 1
  • Z. Satovic
    • 2
  • D. Rubiales
    • 3
  • J. C. Sillero
    • 1
  • J. I. Cubero
    • 4
  • M. T. Moreno
    • 1
  1. 1.Area de Mejora y BiotecnologíaCIFA-Alameda del Obispo, IFAPACórdobaSpain
  2. 2.Department of Seed Science and Technology, Faculty of AgricultureZagrebCroatia
  3. 3.CSIC-Instituto de Agricultura SostenibleCórdobaSpain
  4. 4.Departamento de Genética. E.T.S.I.A.M.University of CórdobaCórdobaSpain

Personalised recommendations