, 147:133 | Cite as

Lathyrus improvement for resistance against biotic and abiotic stresses: From classical breeding to marker assisted selection

  • M. C. Vaz PattoEmail author
  • B. Skiba
  • E. C. K. Pang
  • S. J. Ochatt
  • F. Lambein
  • D. Rubiales


Several Lathyrus species and in particular Lathyrus sativus (grass pea) have great agronomic potential as grain and forage legume, especially in drought conditions. Grass pea is rightly considered as one of the most promising sources of calories and protein for the vast and expanding populations of drought-prone and marginal areas of Asia and Africa. It is virtually the only species that can yield high protein food and feed under these conditions. It is superior in yield, protein value, nitrogen fixation, and drought, flood and salinity tolerance than other legume crops. Lathyrus species have a considerable potential in crop rotation, improving soil physical conditions; reducing the amount of disease and weed populations, with the overall reduction of production costs. Grass pea was already in use in Neolithic times, and presently is considered as a model crop for sustainable agriculture. As a result of the little breeding effort invested in it compared to other legumes, grass pea cultivation has shown a regressive pattern in many areas in recent decades. This is due to variable yield caused by sensitivity to diseases and stress factors and above all, to the presence of the neurotoxin β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), increasing the danger of genetic erosion. However, both L. sativus and L. cicera are gaining interest as grain legume crops in Mediterranean-type environments and production is increasing in Ethiopia, China, Australia and several European countries.

This paper reviews research work on Lathyrus breeding focusing mainly on biotic and abiotic resistance improvement, and lists current developments in biotechnologies to identify challenges for Lathyrus improvement in the future.

Key Words

biotechnology biotic and abiotic stress breeding disease resistance grass pea Lathyrus 


  1. Abd El-Moneim, A.M. & P.S. Cocks, 1993. Adaptation and yield stability of selected lines of Lathyrus spp. under rainfed conditions in West Asia. Euphytica 66: 89–97.Google Scholar
  2. Abd El Moneim, A.M., B. van Dorrestein, M. Baum, J. Ryan & G. Bejiga, 2001. Role of ICARDA in improving the nutritional quality and yield potential of grasspea (Lathyrus sativus L.), for subsistence farmers in dry areas. Lathyrus Lathyrism Newsl 2: 55–58.Google Scholar
  3. Alba, E., G.B. Polignano, D. De Carlo & A. Mincione, 2001. Electrophoretic phenotypes of different enzymes in some entries of Lathyrus sativus L. Lathyrus Lathyrism Newsl 2: 15–20.Google Scholar
  4. Ali, K., K.C. Bansal, A. Sachdev, N. Tiwari, I.M. Santha & S.L. Mehta, 2000. Physiological activity and biochemical analysis of Lathyrus sativus somaclones derived from root and internode explants. J Plant Biochem Biotechnol 9: 27–30.Google Scholar
  5. Asmussen, C.B. & A. Liston, 1998. Chloroplast DNA characters, phylogeny, and classification of Lathyrus (Fabaceae). Am J Bot 85(3): 387–401.CrossRefGoogle Scholar
  6. Asthana, A.N., 1995. Grasspea cultivation in problem areas: Present approaches. In: R.K. Arora, P.N. Mathur, K.W. Riley & Y. Adham (Eds.), Lathyrus Genetic Resources in Asia. Proceedings of a Regional Workshop, 27–29 December, Raipur, India, pp. 143–148.Google Scholar
  7. Asthana, A.N. & G.P. Dixit, 1997. Utilization of genetic resources in Lathyrus. In: P.N. Mathur, V.R. Rao & R.K. Arora (Eds.), Lathyrus Genetic Resources Network. Proceedings of a IPGRI-ICARDA-ICAR Regional Working Group Meeting, 8–10 December, New Delhi, India, pp. 64–70.Google Scholar
  8. Bard, A., H. El Shazly, H. El Rabey & L.E. Watson, 2002. Systematic relationships in Lathyrus sect. Lathyrus (Fabaceae) based on amplified fragment length polymorphism (AFLP) data. Can J Bot 80: 962–969.CrossRefGoogle Scholar
  9. Barik, D.P., P.K. Chand & U. Mohapatra, 2004. Suppression of the neurotoxic amino acid in seed storage protein of Lathyrus sativus L. via mutation techniques and gene transfer. In: FAO/IAEA TECDOC, pp. 61–76.Google Scholar
  10. Barna, K.S. & S.L. Mehta, 1995. Genetic transformation and somatic embryogenesis in Lathyrus sativus. J Plant Biochem Biotechnol 4: 67–71.Google Scholar
  11. Bartlem, D., I. Lambein, T. Okamoto, A. Itaya, Y. Uda, F. Kijima, Y. Tamaki, E. Nambara & S. Naito, 2000. Mutation in the threonine synthase gene results in an over-accumulation of soluble methionine in Arabidopsis. Plant Physiol 123: 101–110.PubMedCrossRefGoogle Scholar
  12. Ben Brahim, N., A. Salhi, N. Chtourou, D. Combes & M. Marrakchi, 2002. Isozymic polymorphism and phylogeny of 10 Lathyrus species. Genet Res Crop Evol 49: 427–436.CrossRefGoogle Scholar
  13. Benková, M. & M. Žáková, 2001. Evaluation of selected traits in grasspea (Lathyrus sativus L.) genetic resources. Lathyrus Lathyrism Newsl 2: 27–30.Google Scholar
  14. Bertioli, D.J., S.C.M. Leal-Bertioli, M.B. Lion, V.L. Santos, G. Pappas, Jr., S.B. Cannon & P.M. Guimarães, 2003. A large scale analysis of resistance gene homologues in Arachis. Mol Gen Genomics 270: 34–45.CrossRefGoogle Scholar
  15. Bhat, H.R., 1948. An improved genetical map of Punnet’s ‘B’ chromosome in the sweet pea (Lathyrus odoratus L.). Biochem J 83: 225–345.Google Scholar
  16. Biswas, A.K., in press. Induced mutation in grass pea (Lathyrus sativus L.). In: S.J. Ochatt & S. Mohan Jain (Eds.), Underutilised and Neglected Crops, Herbs and Spices. Science Press, Enfield, USA.Google Scholar
  17. Campbell, C.G., 1997. Grass pea. Lathyrus sativus L. Promoting the conservation and use of underutilized and neglected crops. 18. Institute of Plant Genetics and Crop Plant Research. Gatersleben/International Plant Genetic Resources Institute, Rome, Italy.Google Scholar
  18. Campbell, C.G., R.B. Mehra, S.K. Agrawal, Y.Z. Chen, A.M.A. El Ali, H.I.T. Khawaja, C.R. Yadav, J. Toy & W.A. Araya, 1994. Current status and future strategy in breeding grass pea (Lathyrus sativus). Euphytica 73: 167–175.CrossRefGoogle Scholar
  19. Chakrabarti, A., I.M. Santha & S.L. Mehta, 1999. Molecular characterization of low ODAP somaclones of Lathyrus sativus. J Plant Biochem Biotechnol 8: 25–29.Google Scholar
  20. Chowdhury, M.A. & A.E. Slinkard, 2000. Genetics of Isozymes in Grasspea. Am Genet Assoc 91: 142–145.Google Scholar
  21. Chowdhury, M.A. & A.E. Slinkard, 1999. Linkage of random amplified polymorphic DNA, isozyme and morphological markers in grasspea (Lathyrus sativus). J Agric Sci 133: 389–395.CrossRefGoogle Scholar
  22. Chowdhury, M.A. & A.E. Slinkard, 1997. Natural outcrossing in grasspea. J Hered 88: 154–156.Google Scholar
  23. Chtourou-Ghorbel, N., B. Lauga, N. Ben Brahim, D. Combes & M. Marrakchi, 2002. Genetic variation analysis in the genus Lathyrus using RAPD markers. Genet Res Crop Evol 49: 363–370.CrossRefGoogle Scholar
  24. Chtourou-Ghorbel, N., B. Lauga, D. Combes & M. Marrakchi, 2001. Comparative genetic diversity studies in the genus Lathyrus using RFLP and RAPD markers. Lathyrus Lathyrism Newsl 2: 62–68.Google Scholar
  25. Cocks, P., K. Siddique & C. Hanbury, 2000. Lathyrus. A new grain legume. A report for the rural industries Research and development corporation. Rural Industries Research & Development Corporation.Google Scholar
  26. Cordero, J.C. & D.Z. Skinner, 2002. Isolation from alfalfa of resistance gene analogues containing nucleotide binding sites. Theor Appl Genet 104: 1283–1289.PubMedCrossRefGoogle Scholar
  27. Creusot, F., C. Macadre, E. Ferrier-Cana, C. Riou, V. Geffroy, M. Sevignac, M. Dzron & T. Langin, 1999. Cloning and molecular characterization of the three members of the NBS-LRR subfamily located in the vicinity of the Co-2 locus for anthracnose resistance in Phaseolus vulgaris. Genome 42: 254–264.PubMedCrossRefGoogle Scholar
  28. Crinó, P., G.B. Polignano & S. Tavoletti, 2004. Grass pea, a potentially important crop in Mediterranean agriculture. Grain Legumes 40: 6–7.Google Scholar
  29. Croft, A.M., E.C.K. Pang & P.W.J. Taylor, 1999. Molecular analysis of Lathyrus sativus L. (graspea) and related Lathyrus species. Euphytica 107: 167–176.CrossRefGoogle Scholar
  30. Datta, A., 1995. Strategy to develop transgenic Lathyrus with low level neurotoxin by recombinant DNA technology. In: H.K.M. Yusuf & F. Lambein (Eds.), Lathyrus sativus and Human Lathyrism: Progress and Prospects, pp 173–176. University of Dhaka, Bangladesh.Google Scholar
  31. Davenport, G., N. Ellis, M. Ambrose & J. Dicks, 2004. Using bioinformatics to analyse germplasm collections. Euphytica 137: 39–54.CrossRefGoogle Scholar
  32. De la Rosa, L. & I. Martín, 2001. Morphological characterisation of Spanish genetic resources of Lathyrus sativus L. Lathyrus Lathyrism Newsl 2: 31–34.Google Scholar
  33. Delgado-Montero, V.M. & R. Moreno, 1986. Callus induction and culture from different explants of Lathyrus sativus. In: A.K. Kaul & D. Combes (Eds.), Proceedings of the International Symposium on Lathyrus and Lathyrism, pp. 169–170. Third World Medical Research Foundation, New York.Google Scholar
  34. Duke, J.A., 1981. Handbook of Legumes of World Economic Importance. Plenum Press, New York.Google Scholar
  35. Durieu, P. & S.J. Ochatt, 2000. Efficient intergeneric fusion of pea (Pisum sativum L.) and grass pea (Lathyrus sativus L.) protoplasts. J Exp Bot 51: 1237–1242.PubMedCrossRefGoogle Scholar
  36. Getahun, H., F. Lambein, M. Vanhoorne & P. van der Stuyft, 2003. Food-aid to reduce neurolathyrism relatd to grass-pea preparations during famine. Lancet 362: 1808–1810.PubMedCrossRefGoogle Scholar
  37. Getahun, H., A. Mekonnen, R. Tekle Haimanot & F. Lambein, 1999. Epidemic of neurolathyrism in Ethiopia. Lancet 354: 306–307.PubMedCrossRefGoogle Scholar
  38. Gharyal, P.K. & S.C. Maheshwari, 1980. Plantlet formation from callus cultures of a legume, Lathyrus sativus cv. L.S.D.-2. Z Pflanzenphysiol 100: 358–362.Google Scholar
  39. Gowda, B.S., J.L. Miller, S.S. Rubin, D.R. Sharma & M.P. Timko, 2002. Isolation, sequence analysis, and linkage mapping of resistance-gene analogs in cowpea (Vigna unguiculata L. Walp.) Euphytica 126: 365–377.CrossRefGoogle Scholar
  40. Granati, E., V. Bisignano, D. Chiaretti, G.B. Polignano & P. Crinò, 2001. Grain quality in accessions of Lathyrus spp. Lathyrus Lathyrism Newsl 2: 69–71.Google Scholar
  41. Gurung, A.M., E.C.K. Pang & P.W.J. Taylor, 2002. Examination of Pisum and Lathyrus species as sources of ascochyta blight resistance for field pea (Pisum sativum). Aus Plant Pathol 31: 41–45.CrossRefGoogle Scholar
  42. Hanada, H. & M. Hirai, 2003. Development of genetic marker linked to the tendril trait of sweet pea (Lathyrus odoratus L.). Breed Sci 53: 7–13.CrossRefGoogle Scholar
  43. Hanbury, C.D., 2000. Lathyrus grain as quality animal feed. Grain Legumes 30: 10–11.Google Scholar
  44. Hanbury, C.D. & K.H.M. Siddique, 2000. Registration of ‘Chalus’ Lathyrus cicera L. Crop Sci 40: 1199.Google Scholar
  45. Hanbury, C.D., C.L. White, B.P. Mullan & K.H.M. Siddique, 2000. A review of the potential of Lathyrus sativus L. and L. cicera L. grain for use as animal feed. Anim Feed Technol 87: 1–27.CrossRefGoogle Scholar
  46. Hanbury, C.D., K.H.M. Siddique, N.W. Galwey & P.S. Cocks, 1999. Genotype-environment interaction for seed yield and ODAP concentration of Lathyrus sativus L. and L. cicera L. in Mediterranean-type environments. Euphytica 110: 445–460.CrossRefGoogle Scholar
  47. Haqqani, A.M. & M. Arshad, 1995. Crop status and genetic diversity in grass pea in Pakistan. In: R.K. Arora, P.N. Mathur, K.W. Riley & Y. Adham (Eds.), Lathyrus Genetic Resources in Asia. Proceedings of a Regional Workshop, 27–29 December, Raipur, India, pp. 59–65.Google Scholar
  48. Harlan, J.R. & J.M.J. de Wet, 1971. Toward a rational classification of cultivated plants. Taxon 20: 509–517.CrossRefGoogle Scholar
  49. Henry, R.J., 1997. Practical Applications of Plant Molecular Biology. Chapman and Hall, London, pp. 99–132.Google Scholar
  50. Hoque, R., M. Hussain, Y.H. Kuo & F. Lambein, 1996. Salinity tolerance and accumulation of neurotoxin and excitatory amino acids in Lathyrus sativus. Bangladesh J Biochem 2: 15–27.Google Scholar
  51. Hussain, M., B. Chowdhury, R. Hoque & F. Lambein, 1997. Effect of water stress, salinity, interaction of cations, stage of maturity of seeds and storage devices on the ODAP content of Lathyrus sativus. In: R.T. Haimanot & F. Lambein (Eds.), Lathyrus and Lathyrism: A Decade of Progress. Proceedings of an International Conference, 27–29 November 1995, Addis Ababa, pp. 107–110.Google Scholar
  52. IPGRI, 2000. Descriptors for Lathyrus spp. International Plant Genetic Resources Institute, Rome, Italy.Google Scholar
  53. Jackson, M.T. & A.G. Yunus, 1984. Variation in the grass pea (Lathyrus sativus L.) and wild species. Euphytica 33: 549–559.CrossRefGoogle Scholar
  54. Kanazin, V., L.F. Marek & R.C. Shoemaker, 1996. Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA 93: 11746–11750.PubMedCrossRefGoogle Scholar
  55. Kaul, A.K., M.Q. Islam & A. Hamid, 1986. Screening of Lathyrus germplasm of Bangladesh for BOAA content and some agronomic characters. In: A.K. Kaul & D. Combes (Eds.), Proceedings of the International Symposium on Lathyrus and Lathyrism, pp. 130–141. Third World Medical Research Foundation, New York.Google Scholar
  56. Kuo, Y.H., F. Ikegami & F. Lambein, 2003. Neuroactive and other free amino acids in seed and young plants of Panax ginseng. Phytochemistry 62: 1087–1091.PubMedCrossRefGoogle Scholar
  57. Kuo, Y.H., H.M. Bau, P. Rozan, B. Chowdhury & F. Lambein, 2000. Reduction efficiency of the Neurotoxin β-ODAP in low toxin varieties of Lathyrus sativus seeds by solid-state fermentation with Aspergillus oryzae and Rhizopus microsporus var. chinensis. J Sci Food Agric 80: 2209–2215.CrossRefGoogle Scholar
  58. Kuo, Y.H., F. Ikegami & F. Lambein, 1998. Metabolic routes of beta-(isoxazolin-5-on-2-yl)-L-alanine (BIA), the precursor of the neurotoxin ODAP (beta-N-oxalyl-L-alpha, beta,-diaminopropionic acid), in different legume seedlings. Phytochemistry 49(1): 43–48.CrossRefGoogle Scholar
  59. Kuo, Y.H., H.M. Bau, B. Quemener, J.K. Khan & F. Lambein, 1995. Solid state fermentation of Lathyrus seeds using Aspergillus oryzae and Rhizopus oligosporus sp T3 to eliminate the neurotoxin β-ODAP without loss of nutritional value. J Sci Food Agric 69: 81–89.Google Scholar
  60. Kupicha, F.K., 1983. The infrageneric structure of Lathyrus. Notes from the Royal Botanic Garden Edinburgh 41: 209–244.Google Scholar
  61. Kupicha, F.K., 1977. The delimitation of the tribe Vicieae (Leguminosae) and the relationships of Cicer L. Bot J Linn Soc 74: 131–162.Google Scholar
  62. Lal, M.S., I. Agrawal & M.W. Chitale, 1986. Genetic improvement of chickling vetch in Madhya Pradesh, India. In: A.K. Kaul & D. Combes (Eds.), Proceedings of the International Symposium on Lathyrus and Lathyrism, pp. 146–160. Third World Medical Research Foundation, New York.Google Scholar
  63. Lambein, F. & Y.H. Kuo, 2004. Somaclonale variatie in Lathyrus sativus. Abstract, Autumn meeting Netherlands Society for Plant Biotechnology and Tissue culture NVPW, Leiden, 5 November (
  64. Lambein, F., D. Diasolua Ngudi & Y.H. Kuo, 2001. Vapniarca revisited: Lessons from an inhuman human experience. Lathyrus Lathyrism Newsl 2: 5–7.Google Scholar
  65. Lambein, F., G. Ongena & Y.H. Kuo, 1990. B-isoxazolinone-alanine is involved in the biosynthesis of the neurotoxin, β-N-oxalyl-L-α,β-diaminopropionic acid. Phytochemistry 29: 3793–3796.CrossRefGoogle Scholar
  66. Linke, K.H., A.M. Abd El-Moneim & M.C. Saxena, 1993. Variation in resistance of some forage legumes species to Orobanche crenata Forsk. Field Crop Res 32: 277–285.CrossRefGoogle Scholar
  67. Lorieux, M., B. Goffinet, X. Perrier, D. Gonzalez de Leon & C. Lenaud, 1995. Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross populations. Theor Appl Genet 90: 73–80.Google Scholar
  68. Malek, M.A., C.D.M. Sarwar, A. Sarker & M.S. Hassan, 1995. Status of grasspea research and future strategy in Bangladesh. In: R.K. Arora, P.N. Mathur, K.W. Riley & Y. Adham (Eds.), Lathyrus Genetic Resources in Asia. Proceedings of a Regional Workshop, 27–29 December, Raipur, India, pp. 7–12.Google Scholar
  69. Malik, K.A., S.T. Ali-Khan & P.K. Saxena, 1993. High frequency organogenesis from direct seed culture in Lathyrus. Ann Bot 72: 629–637.CrossRefGoogle Scholar
  70. McCutchan, J.S., P.J. Larkin, P.A. Stoutjesdijk, E.R. Morgan & P.W.J. Taylor, 1999. Establishment of shoot and suspension cultures for protoplast isolation in Lathyrus sativus L. J Breed Genet 31: 43–50.Google Scholar
  71. Mehta, S.L., 1997. Plant biotechnology for removal of ODAP from Lathyrus. In: R.T. Haimanot & F. Lambein (Eds.), Lathyrus and Lathyrism, a decade of progress, pp. 103–1104. University of Ghent, Belgium.Google Scholar
  72. Mera, M., A. Montenegro, N. Espinoza & N. Gaete, 2000. Research backs grass pea exports by small Chilean farmers. Lathyrus Lathyrism Newsl 1: 31.Google Scholar
  73. Michelmore, R., 1995. Molecular approaches to manipulation of disease resistance genes. Ann Rev Phytopathol 15: 393–427.CrossRefGoogle Scholar
  74. Milczak, M., M. Pedzinski, H. Mnichowska, K. Szwed-Urbas & W. Rybinski, 2001. Creative breeding of grass pea (Lathyrus sativus) in Poland. Lathyrus Lathyrism Newsl 2: 85–88.Google Scholar
  75. Millan, T., H.J. Clarke, K.H.M. Siddique, H.K. Buhariwalla, P.M. Gaur, J. Kumar, et al., 2006. Chickpea molecular breeding: New tools and concepts. Euphytica 147: 81–103.Google Scholar
  76. Misra, M., G. Addis & R.K.J. Narayan, 1994. Methods for callus induction and differentiation of Lathyrus sativus and embryo rescue in interspecific crosses by tissue culture. J Univ Wales Agric Soc 74: 129–144.Google Scholar
  77. Mitchell, R., 1971. The grass pea distribution, diet and disease. Assoc Pacific Coast Geograph Year Book 33: 29–46.Google Scholar
  78. Muehlbauer, F.J. & A. Tullu, 1997. NewCROP FactSHEET – Lathyrus sativus L. In:
  79. Mukhopadhyay, A. & S.S. Bhojwani, 1978. Shoot-bud differentiation in tissue cultures of leguminous plants. Z Pflanzenphysiol 88: 263–268.Google Scholar
  80. Murti, V.V.S., T.R. Seshadri & T.A. Venkitasubramanian, 1964. Neurotoxic compounds in the seeds of Lathyrus sativus. Phytochemistry 3: 73–78.CrossRefGoogle Scholar
  81. Narayan, R.K.J., A. Getachew & A. Jadhav, 1995. Genetic manipulation of the biosynthesis of β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP) in Lathyrus sativus: Problems progress and prospects. In: H.K.M. Yusuf & F. Lambein (Eds.), Lathyrus sativus and Human Lathyrism: Progress and Prospects, pp. 177–187. University of Dhaka, Bangladesh.Google Scholar
  82. Nerkar, Y.S., 1976. Mutation studies in Lathyrus sativus. Indian J Genet Plant Breed 36: 223–229.Google Scholar
  83. Neupane, R.K., 1995. Status of Lathyrus research and production in Nepal. In: R.K. Arora, P.N. Mathur, K.W. Riley & Y. Adham (Eds.), Lathyrus Genetic Resources in Asia. Proceedings of a Regional Workshop, 27–29 December, Raipur, India, pp. 29–35.Google Scholar
  84. Ochatt, S.J., M. Abirached-Darmency, P. Marget & G. Aubert, in press. The Lathyrus paradox: “poor men’s diet” or a remarkable genetic resource for protein legume breeding? In: S.J. Ochatt & S. Mohan Jain (Eds.), Underutilised and Neglected Crops, Herbs and Spices. Science Press, Enfield, USA.Google Scholar
  85. Ochatt, S.J., A. Benabdelmouna, P. Marget, G. Aubert, F. Moussy, C. Pontécaille & L. Jacas, 2004. Overcoming hybridisation barriers between pea and some of its wild relatives. Euphytica 137: 353–359.CrossRefGoogle Scholar
  86. Ochatt, S.J., R.S. Sangwan, P. Marget, Y. Assoumou Ndong, M. Rancillac & P. Perney, 2002. New approaches towards the shortening of generation cycles for faster breeding of protein legumes. Plant Breed 121: 436–440.CrossRefGoogle Scholar
  87. Ochatt, S.J., P. Durieu, L. Jacas & C. Pontécaille, 2001. Protoplast, cell and tissue cultures forthe biotechnological breeding of grass peas (Lathyrus sativus L.). Lathyrus Neurolathyrism Newsl 2: 35–38.Google Scholar
  88. Ochatt, S.J., C. Mousset-Déclas & M. Rancillac, 2000. Fertile pea plants regenerate from protoplasts when calluses have not undergone endoreduplication. Plant Sci 156: 177–183.PubMedCrossRefGoogle Scholar
  89. Pandey, R.L., R.N. Sharma & M.W. Chitale, 1997. Status of Lathyrus genetic resources in India. In: P.N. Mathur, V.R. Rao & R.K. Arora (Eds.), Lathyrus Genetic Resources Network. Proceedings of a IPGRI-ICARDA-ICAR Regional Working Group Meeting, 8–10 December, New Delhi, India, pp. 7–14.Google Scholar
  90. Pandey, R.L., M.W. Chitale, R.N. Sharma & N. Rastogi, 1995. Status of Lathyrus research in India. In: R.K. Arora, P.N. Mathur, K.W. Riley & Y. Adham (Eds.), Lathyrus Genetic Resources in Asia. Proceedings of a Regional Workshop, 27–29 December, Raipur, India, pp. 45–52.Google Scholar
  91. Pang, E.C.K., J.S. Croser, K.T. Imberger, J.S. McCutchan & P.W.J. Taylor, 2000. Tissue culture and protoplast fusion of cool-season pulses: Pea (Pisum sativum L.) and Chickpea (Cicer arietinum L.). Curr Plant Sci Biotechnol Agric 34: 429–427.Google Scholar
  92. Patil, V.D., U.G. Kulkarni, S.R. Harkal & Y.S. Nerkar, 1997. Studies on in vitro plant regeneration in grass pea (Lathyrus sativus L.). In: R.T. Haimanot & F. Lambein (Eds.), Lathyrus and Lathyrism, a Decade of Progress, pp. 125–127. University of Ghent, Belgium.Google Scholar
  93. Peña-Chocarro, L., & L.Z. Peña, 1999. History and traditional cultivation of Lathyrus sativus L. and Lathyrus cicera L. in the Iberian Peninsula. Vegetation Hist Archaeobot 8: 49–52.CrossRefGoogle Scholar
  94. Peoples, M.B., D.F. Herrdge & J.K. Ladha, 1995. Biological nitrogen fixation: An efficient source of nitrogen for sustainable agricultural production? Am J Altern Agric 10: 88–96.CrossRefGoogle Scholar
  95. Porta-Puglia, A. & M. Aragona, 1997. Improvement of grain legumes. General part: Diseases. Field Crop Res 53: 17–30.CrossRefGoogle Scholar
  96. Poulter, R., L. Harvey & D.J. Burritt, 2003. Qualitative resistance to powdery mildew in hybrid sweet peas. Euphytica 133: 349–358.CrossRefGoogle Scholar
  97. Prasad, A.B. & A.K. Das, 1980. Morphological variants in khesari. Indian J Genet Plant Breed 40: 172–175.Google Scholar
  98. Punnet, R.C., 1932. Further studies of linkage in the sweet pea. J Genet 26: 97–114.CrossRefGoogle Scholar
  99. Punnet, R.C., 1923. Linkage in the sweet pea (Lathyrus odoratus). J Genet 13: 101–123.Google Scholar
  100. Rahman, M.A., M.M. Rahman & M.A. Sarkar, 2001. Progress in isolation and purification of Lathyrus sativus breeding lines. Lathyrus Lathyrism Newsl 2: 39–40.Google Scholar
  101. Rao, S.L.N., P.R. Adiga & P.S. Sarma, 1964. Isolation and characterization of β-oxalyl-L-α,β-diaminopropionic acid: A neurotoxin from the seeds of Lathyrus sativus. Biochemistry 3: 432–436.PubMedCrossRefGoogle Scholar
  102. Rivkin, M.I., C.E. Vallejos & P.E. McClean, 1999. Disease-resistance related sequences in common bean. Genome 42: 41–47.PubMedCrossRefGoogle Scholar
  103. Robertson, L.D. & A.M. Abd El-Moneim, 1997. Status of Lathyrus germplasm held at ICARDA and its use in breeding programmes. In: P.N. Mathur, V.R. Rao & R.K. Arora (Eds.), Lathyrus Genetic Resources Network. Proceedings of a IPGRI-ICARDA-ICAR Regional Working Group Meeting, 8–10 December, New Delhi, India, pp. 30–41.Google Scholar
  104. Robertson, L.D. & A.M. Abd El-Moneim, 1995. Status of Lathyrus germplasm held at ICARDA and its use in breeding programmes. In: R.K. Arora, P.N. Mathur, K.W. Riley & Y. Adham (Eds.), Lathyrus Genetic Resources in Asia. Proceedings of a Regional Workshop, 27–29 December, Raipur, India, pp. 97–111.Google Scholar
  105. Roy, P.K., K. Ali, A. Gupta, G.K. Barat & S.L. Mehta, 1993. β-N-oxalyl-L-α,β-diaminopropionic acid in somaclones derived from internode explants of Lathyrus sativus. J Plant Biochem Biotechnol 2: 9–13.Google Scholar
  106. Roy, P.K., G.K. Barat & S.L. Mehta, 1992. In vitro plant regeneration from callus derived from root explants of Lathyrus sativus. Plant Cell Tiss Organ Cult 29: 135–138.CrossRefGoogle Scholar
  107. Roy, P.K., B. Singh, S.L. Mehta, G.K. Barat, N. Gupta, P.B. Kirti & V.L. Chopra, 1991. Plant regeneration from leaf discs of Lathyrus sativus. Indian J Exp Biol 29: 327–330.Google Scholar
  108. Rudra, M.P.P., M.R. Singh, M.A. Junaid, P. Jyothi & S.L.N. Rao, 2004. Metabolism of dietary ODAP in humans may be responsible for the low incidence of neurolathyrism. Clin Biochem 37: 318–322.CrossRefGoogle Scholar
  109. Rybiński, W., 2003. Mutagenesis as a tool for improvement of traits in grasspea (Lathyrus sativus L.). Lathyrus Lathyrism Newsl 3: 27–31.Google Scholar
  110. Santha, I.M. & S.L. Mehta, 2001. Development of low ODAP somaclones of Lathyrus sativus. Lathyrus Lathyrism Newsl 2: 42.Google Scholar
  111. Sarkar, R.K., B. Biswas & G.C. Malik, 2003. Productivity of grasspea (Lathyrus sativus L.) under different levels of phosphorus and foliar spray of molygdenum. Lathyrus Lathyrism Newsl 3: 36–48.Google Scholar
  112. Sen, N.K. & A.K. Ghosh, 1962. Genetics of grass pea (Lathyrus sativus L.). J Genet 58: 51–64.CrossRefGoogle Scholar
  113. Shamin, M.Z., M.S. Hossain, K. Islam, H.K.M. Yusuf & F. Lambein, 2002. Mechanism of ODAP toxicity in one-day-old chicks. Dhaka Univ J Biol Sci 11: 1–7.Google Scholar
  114. Siddique, K.H.M., S.P. Loss, S.P. Herwig & J.M. Wilson, 1996. Growth, yield and neurotoxin (ODAP) concentration of three Lathyrus species in Mediterranean-type environments of western Australia. Aus J Exp Agric 36: 209–218.CrossRefGoogle Scholar
  115. Sillero, J.C., J.I. Cubero, M. Fernández-Aparicio & D. Rubiales, in press. Search for resistance to crenate broomrape (Orobanche crenata) in Lathyrus. Lathyrus Lathyrism Newsl 4.Google Scholar
  116. Simola, L.K., 1986. Structural and chemical aspects of evolution of Lathyrus species. In: A.K. Kaul & D. Combes (Eds.), Proceedings of the International Symposium on Lathyrus and Lathyrism, pp. 225–239. Third World Medical Research Foundation, New York.Google Scholar
  117. Singh, S., R.P. Johari & S.L. Mehta, 1997. Biochemical and cytological studies during seed development in somaclones of Lathyrus sativus. J Plant Biochem Biotechnol 6: 101–104.Google Scholar
  118. Skiba, B., R. Ford & E.C.K. Pang, 2004a. Genetics of resistance to Mycosphaerella pinodes in Lathyrus sativus. Aus J Agric Res 55: 953–960.CrossRefGoogle Scholar
  119. Skiba, B., R. Ford & E.C.K. Pang, 2004b. Construction of a linkage map based on a Lathyrus sativus backcross population and preliminary investigation of QTLs associated with resistance to ascochyta blight. Theor Appl Genet 109: 1726–1735.CrossRefGoogle Scholar
  120. Skiba, B., R. Ford & E.C.K. Pang, 2003. Amplification and detection of polymorphic sequence-tagged sites in Lathyrus sativus. Plant Mol Biol Rep 21: 391–404.Google Scholar
  121. Smartt, J., A. Kaul, W.A. Araya, M.M. Rahman & J. Kearney, 1994. Grasspea (Lathyrus sativus L.) as a potentially safe food legume crop. In: F.J. Muehlbauer & W.J. Kaiser (Eds.), Expanding the Production and Use of Cool Season Food Legumes, pp. 144–155. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  122. Soltis, D.E. & P.S. Soltis, 2000. Contribution of plant molecular systematics to studies of molecular evolution. Plant Mol Biol 42: 45–75.PubMedCrossRefGoogle Scholar
  123. Sriram, K., S.K. Shankar, M.R. Boyd & V. Ravindranath, 1998. Thiol oxidation and loss of mitochondrial complex I precede excitatory amino acid-mediated neurodegeneration. J Neurosci 18: 10287–10296.PubMedGoogle Scholar
  124. Tadesse, W. & E. Bekele, 2001. Isozymes variability of grasspea (Lathyrus sativus L.) in Ethiopia. Lathyrus Lathyrism Newsl 2: 43–46.Google Scholar
  125. Tadesse, W. & E. Bekele, 2003a. Variation and association of morphological and biochemical characters in grass pea (Lathyrus sativus L.). Euphytica 130: 315–324.CrossRefGoogle Scholar
  126. Tadesse, W. & E. Bekele, 2003b. Phenotypic diversity of Ethiopian grass pea (Lathyrus sativus L.) in relation to geographical regions and altitudinal range. Genet Res Crop Evol 50: 497–505.CrossRefGoogle Scholar
  127. Tanksley, S.D., 1993. Mapping polygenes. Ann Rev Genet 27: 205–233.PubMedCrossRefGoogle Scholar
  128. Tanksley, S.D., N.D. Young, A.H. Paterson & M.W. Bonierbale, 1989. RFLP mapping in plant breeding: New tools for old science. Biotechnology 7: 257–264.CrossRefGoogle Scholar
  129. Tavoletti, S. & E. Capitani, 2000. Field evaluation of grass pea populations collected in the Marche region (Italy). Lathyrus Lathyrism Newsl 1: 17–20.Google Scholar
  130. Timmerman-Vaughan, G.M., T.J. Frew & N.F. Weeden, 2000. Characterization and linkage mapping of R-gene analogous DNA sequences in Pea (Pisum sativum L.). Theor Appl Genet 101: 241–247.CrossRefGoogle Scholar
  131. Tiwari, K.R. & C.G. Campbell, 1996. Inheritance of neurotoxin (ODAP) content, flower and seed coat colour in grass pea (Lathyrus sativus L.). FABIS Newsl 38/39: 195–203.Google Scholar
  132. Tiwari, N., K.C. Bansai, K. Ali, A. Sachdev, I.M. Santha & S.L. Mehta, 1995. Physiological and biochemical analysis of somaclones derived from leaf explants of Lathyrus sativus. J Plant Biochem Biotechnol 4: 85–89.Google Scholar
  133. Torres, A.M., B. Román, C.M. Avila, Z. Satovic, J.C. Sillero, et al., 2006. Faba bean breeding for resistance against biotic stresses: Toward application of marker technology. Euphytica 147: 67–80.Google Scholar
  134. Vaz Patto, M.C., A. Moral & D. Rubiales, 2004. Resistance to powdery mildew and rust fungi in Lathyrus species. In: Proceedings of the Fifth European Conference on Grain Legumes/2nd International Conference on Legume Genomics and Genetics, 7–11 June 2004, p. 64. Published by AEP, Dijon, France.Google Scholar
  135. Wang, X., T.D. Warkentin, C.J. Briggs, B.D. Oomah, C.G. Campbell & S. Woods, 1998. Trypsin inhibitor activity in field pea (Pisum sativum L.) and grass pea (Lathyrus sativus L.). J Agric Food Chem 46: 2620–2623.CrossRefGoogle Scholar
  136. Weeden, N.F., T.H.N. Ellis, G.M. Timmerman-Vaughan, C.J. Simon, A.M. Torres & B. Wolko, 1997. How similar are the genomes of the cool season food legumes. In: Proceedings of the International Food Legume Conference III, Adelaide, Australia, p. 55.Google Scholar
  137. Weimer, J.L., 1947. Resistance of Lathyrus spp. and Pisum spp. to Ascochyta pinodella and Mycosphaerella pinodes. J Agric Res 75: 181–190.Google Scholar
  138. Winter, P. & G. Kahl, 1995. Molecular marker technology for plant improvement. World J Microb Biotechnol 11: 438–448.CrossRefGoogle Scholar
  139. Yaish, M.W.F., L.E. Sáenz de Miera & M. Pérez de la Vega, 2004. Isolation of a family of resistance gene analogue sequences of the nucleotide binding site (NBS) type from Lens species. Genome 47: 650–659.PubMedCrossRefGoogle Scholar
  140. Yamamoto, O.K., T. Fujiwara & I.D. Blumenreich, 1984. Karyotypes and morphological characteristics of some species in the genus Lathyrus L. Jpn J Breed 34: 273–284.Google Scholar
  141. Young, N.D., 1999. A cautiously optimistic vision for marker-assisted breeding. Mol Breed 5: 505–510.CrossRefGoogle Scholar
  142. Young, N.D., 1996. QTL mapping and quantitative disease resistance in plants. Ann Rev Phytopathol 34: 479–501.CrossRefGoogle Scholar
  143. Yu, Y.G., G.R. Buss & M.A. Saghai Maroof, 1996. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc Natl Acad Sci USA 93: 11751–11756.PubMedCrossRefGoogle Scholar
  144. Yunus, A.G. & M.T. Jackson, 1991. The gene pools of the grasspea (Lathyrus sativus L.). Plant Breed 106: 319–328.CrossRefGoogle Scholar
  145. Yunus, A.G., M.T. Jackson & P.C. Janet, 1991. Phenotypic polymorphism of six enzymes in the grasspea (Lathyrus sativus L.). Euphytica 55: 33–42.CrossRefGoogle Scholar
  146. Zambre, M., B. Chowdhury, Y.H. Kuo, M. van Montagu, G. Angenon & F. Lambein, 2002. Prolific regeneration of fertile plants from green nodular callus induced from meristematic tissues in Lathyrus sativus L. (grass pea). Plant Sci 163: 1107–1112.CrossRefGoogle Scholar
  147. Zhou, M. & R.K. Arora, 1995. Conservation and use of underutilized crops in Asia. In: R.K. Arora, P.N. Mathur, K.W. Riley & Y. Adham (Eds.), Lathyrus Genetic Resources in Asia. Proceedings of a Regional Workshop, 27–29 December, Raipur, India, pp. 91–95.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • M. C. Vaz Patto
    • 1
    Email author
  • B. Skiba
    • 2
  • E. C. K. Pang
    • 2
  • S. J. Ochatt
    • 3
  • F. Lambein
    • 4
  • D. Rubiales
    • 5
  1. 1.Instituto de Tecnologia Química e Biológica (ITQB)Plant Cell Biotechnology LabOeirasPortugal
  2. 2.Department of Biotechnology and Environmental BiologyRMIT UniversityBundooraAustralia
  3. 3.INRA, Centre de Recherches de Dijon, URLEGDijon CedexFrance
  4. 4.Institute of Plant Biotechnology for Developing Countries (IPBO)Ghent UniversityGhentBelgium
  5. 5.Instituto de Agricultura Sostenible−CSICCórdobaSpain

Personalised recommendations