Euphytica

, Volume 149, Issue 3, pp 289–301

Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm

  • M. L. Warburton
  • J. Crossa
  • J. Franco
  • M. Kazi
  • R. Trethowan
  • S. Rajaram
  • W. Pfeiffer
  • P. Zhang
  • S. Dreisigacker
  • M. van Ginkel
Article
  • 424 Downloads

Summary

The dangers of a narrow genetic base of the world's major domesticated food crops have become a great global concern in recent decades. The efforts of the International Maize and Wheat Improvement Center (CIMMYT) to breed common wheat cultivars for resource poor farmers in the developing world (known as the Green Revolution wheats) has met with notable success in terms of improved yield, yield stability, increased disease resistance and utilization efficiency of agricultural inputs. However, much of the success was bought at the cost of an overall reduction in genetic diversity in the species; average Modified Roger's distances (MRD) within groups of germplasm fell from 0.64 in the landraces to a low of 0.58 in the improved lines in the 1980s. Recent efforts by CIMMYT breeders to expand the genetic base of common wheat has included the use of landraces, materials from other breeding programs, and synthetic wheats derived from wild species in the pedigrees of new advanced materials. The result, measured using SSR molecular markers, is a highly significant increase in the latent genetic diversity of recently developed CIMMYT breeding lines and cultivars compared to the original Green Revolution wheats (average MRD of the latest materials (0.63) is not significantly different from that of the landraces, as tested using confidence intervals). At the same time, yield and resistance to biotic and abiotic stresses, and end-use quality continue to increase, indicating that the Green Revolution continues to this day.

Keywords

microsatellite simple sequence repeat (SSR) wheat genetic diversity genetic uniformity synthetic hexaploid wheat 

Abbreviations:

CIMMYT

International Maize and Wheat Improvement Center

CML

CIMMYT maize inbred line

MRD

modified Roger's distance

SH

Shannon's diversity index

SHW

synthetic hexaploid wheat

SSR

simple sequence repeat

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almanza-Pinzon, I., M. Khairallah P. Fox & M. Warburton, 2003. Comparison of molecular markers and coefficients of parentage for the analysis of genetic diversity among spring bread wheat genotypes. Euphytica 130: 77–86.CrossRefGoogle Scholar
  2. Braun, H.J., S. Rajaram & M. van Ginkel, 1996. CIMMYT's approach to breeding for wide adaptation. Euphytica 92: 175–183.CrossRefGoogle Scholar
  3. Brennan, J.P. & P.N. Fox, 1998. Impact of CIMMYT varieties on the genetic diversity of wheat in Australia, 1973–1993. Aust J Agric Res 49: 175–178.CrossRefGoogle Scholar
  4. Byerlee, D. & P. Moya, 1993. Impacts of International Wheat Breeding Research in the developing world, 1966–90. CIMMYT, Mexico D.F.Google Scholar
  5. Christiansen, M.J., S.B. Andersen & R. Ortiz, 2002. Diversity changes in intensively bred wheat germplasm during the 20th century. Mol Breed 9: 1–11.CrossRefGoogle Scholar
  6. Cox, T.S., 1998. Deepening the wheat gene pool. J Crop Production 1: 1–25.CrossRefGoogle Scholar
  7. Dreisigacker, S., P. Zhang, M.L. Warburton B. Skovmand D. Hoisington & A.E. Melchinger, 2005. Genetic diversity among and within CIMMYT wheat landrace accessions investigated with SSRs and implications for plant genetic resources management. Crop Sci 45: 653–661.CrossRefGoogle Scholar
  8. Evans, L.T., 1993. Crop Evolution, Adaptation, and Yield. Cambridge University Press. Cambridge, UK.Google Scholar
  9. Evenson, R.E. & D. Gollin, 2003. Assessing the impact of the green revolution, 1960 to 2000. Science 300: 758–762.PubMedCrossRefGoogle Scholar
  10. Harlan, J.R., 1972. Genetics of disaster. J Environ Qual 1: 212–215.CrossRefGoogle Scholar
  11. Kema, G.H.J., W. Lange & C.H. Silfhout, 1995. Differential suppression of stripe rust resistance in synthetic wheat hexaploids derived from Triticum turgidum subsp. dicoccoides and Aegilops squarrosa. Phytopathology 85: 425–429.CrossRefGoogle Scholar
  12. Ladizinsky, G., 1984. Founder effect in crop plant evolution. Econ Bot 39: 191–199.Google Scholar
  13. Lage, J., M.L. Warburton J. Crossa B. Skovmand & S.B. Andersen, 2003. Assessment of genetic diversity in synthetic hexaploid wheats and their Triticum dicoccum and Aegilops tauschii parents using AFLPs and agronomic traits. Euphytica 134: 305–317.CrossRefGoogle Scholar
  14. Lage, J., B. Skovmand & S.B. Andersen, 2004. Field evaluation of emmer wheat derived synthetic hexaploid wheats for resistance to Russian wheat aphid (Homoptera: Aphididae). J Econ Ent 97: 1065–1070.CrossRefGoogle Scholar
  15. Lage, J., B. Skovmand & S.B. Andersen, 2002. Expression and suppression of resistance to greenbug (Homoptera: Aphididae) in synthetic hexaploid wheats derived from Triticum dicoccum × Aegilops tauschii crosses. J Econ Ent 96: 202–206.CrossRefGoogle Scholar
  16. Ma, H., R.P. Singh & A. Mujeeb-Kazi, 1995. Resistance to stripe rust in Triticum turgidum, T. tauschii and their synthetic hexaploids. Euphytica 82: 117–124.CrossRefGoogle Scholar
  17. Maccaferri, M., M.C. Sanguineti P. Donini & R. Tuberosa, 2003. Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm. Theor Appl Genet 107: 783–797.PubMedCrossRefGoogle Scholar
  18. Mujeeb-Kazi, A., A. Cortes V. Rosas S. Cano J. Sanchez L. Juarez & R. Delgado, 2001. Genetic diversity for improving scab resistance in wheat. In: Proc Warren E Kronstad Symp CIMMYT, Mexico. pp. 126–129.Google Scholar
  19. National Research Council, Committee on Genetic Vulnerability of Major Crops. 1972. Genetic Vulnerability of Major Crops. National Academy of Sciences. Washington, D.C.Google Scholar
  20. Pardo, L., D. Morales M. Salicrú & M.L. Menedéz, 1997. Large sample behavior of entropy measures when parameters are estimated. Communications in Statistics–Theory & Methods 26: 483–501.CrossRefGoogle Scholar
  21. Rajaram, S., N.E. Borlaug & M. van Ginkel, 2002. CIMMYT international wheat breeding. In: B.C. Curtis S. Rajaram & H. Gomez Macpherson (Ed.), Bread Wheat Improvement and Production. Plant Production and Protection Series No. 30, pp. 103–117. FAO, Rome.Google Scholar
  22. Rajaram, S. & M. van Ginkel, 2001. Mexico, 50 years of international wheat breeding. (Chapter 22). In: A.P. Bonjean & W.J. Angus (Eds.), The World Wheat Book, A History of Wheat Breeding, pp. 579–608. Lavoisier Publishing, Paris.Google Scholar
  23. Reif, J.C., P. Zhang S. Dreisigacker, M.L. Warburton M. van Ginkel D. Hoisington M. Bohn & A.E. Melchinger, 2005. Trends in genetic diversity during the history of wheat domestication and breeding. Theor Appl Genet 110: 859–864.PubMedCrossRefGoogle Scholar
  24. Roussel, V., L. Leisova F. Exbrayat Z. Stehno & F. Balfourier, 2005. SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000. Theor Appl Genet 111: 162–170.PubMedCrossRefGoogle Scholar
  25. Saghai-Maroof, M.A., K. Soliman, R.A. Jorgensen & R.W. Allard, 1984. Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci 81: 8014–8018.PubMedCrossRefGoogle Scholar
  26. Shannon, C.E., 1948. A mathematical theory of communications. Bell Systems Tech J 27: 379–423.Google Scholar
  27. Singh, R.P. & S. Rajaram, 2002. Breeding for disease resistance in wheat. In: B.C. Curtis, S. Rajaram & H. Gomez Macpherson (Eds.). Bread Wheat Improvement and Production, Plant Production and Protection Series No. 30, pp. 141–156. FAO, Rome, Italy.Google Scholar
  28. Smale, M., I. Ortiz-Monasterio M. Warburton B. Skovmand M. Reynolds J. Crossa R. Singh & R. Trethowan, 2002. Dimensions of diversity in modern spring bread wheat in developing countries from 1965. Crop Sci 42: 1766–1779.CrossRefGoogle Scholar
  29. Tanksley, S.D. & S.R. McCouch, 1997. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277: 1063–1066.PubMedCrossRefGoogle Scholar
  30. Trethowan, R.M., J. Crossa M. van Ginkel & S. Rajaram, 2001. Relationships among bread wheat international yield testing locations in dry areas. Crop Sci 41: 1461–1469.CrossRefGoogle Scholar
  31. Trethowan, R.M., M. van Ginkel K. Ammar J. Crossa, T.S. Payne B. Cukadar S. Rajaram & E. Hernandez, 2003. Associations amongtwenty years of international bread wheat yield evaluation environments. Crop Sci 43: 1698–1711.CrossRefGoogle Scholar
  32. Trethowan, R.M., M.P. Reynolds, K.D. Sayre & I. Ortiz-Monasterio, 2005. Adapting wheat cultivars to resource conserving farming practices and human nutritional needs. Ann Appl Biol 146: 404–413.CrossRefGoogle Scholar
  33. Van Beuningen, L.T. & R.H. Busch, 1997. Genetic diversity among North American spring wheat cultivars: II. Ancestor contributions to gene pools of different eras and regions. Crop Sci 37: 580–585.CrossRefGoogle Scholar
  34. Van der Plank, J.E., 1963. Plant Diseases: Epidemics and Control, pp. 349. Academic Press, New York.Google Scholar
  35. Vavilov, N.I., 1997. Five Continents. International Plant Genetic Resources Institute, Rome, Italy.Google Scholar
  36. Villareal, R.L., A. Mujeeb-Kazi E. Del Toro J. Crossa & S. Rajaram, 1994a. Agronomic variability in selected Triticum turgidum × T. tauschii synthetic hexaploid wheats. J Agron & Crop Sci 173: 307–317.CrossRefGoogle Scholar
  37. Villareal, R.L., A. Mujeeb-Kazi S. Rajaram & E. Del Toro, 1994b. Morphological variability in some synthetic hexaploid wheats derived from Triticum turgidum × T. tauschii. J Genet & Breed 48: 7–16.Google Scholar
  38. Villareal, R.L., K. Sayre O. Banuelos & A. Mujeeb-Kazi, 2001. Registration of four synthetic hexaploid wheat (Triticum turgidum/Aegilops tauschii) germplasm lines tolerant to waterlogging. Crop Sci 41: 274.CrossRefGoogle Scholar
  39. Zhang, P., S. Dreisigacker, A.E. Melchinger M. van Ginkel D. Hoisington & M.L. Warburton, 2005. Quantifying novel sequence variation in CIMMYT synthetic hexaploid wheats and their backcross-derived lines using SSR markers. Mol Breed 12: 1–10.CrossRefGoogle Scholar
  40. Zohary, D., J.H. Harlan & A. Vardi, 1969. The wild diploid progenitors of wheat and their breeding value. Euphytica 18: 58–65.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • M. L. Warburton
    • 1
  • J. Crossa
    • 1
  • J. Franco
    • 2
  • M. Kazi
    • 1
  • R. Trethowan
    • 1
  • S. Rajaram
    • 3
  • W. Pfeiffer
    • 1
  • P. Zhang
    • 1
  • S. Dreisigacker
    • 1
  • M. van Ginkel
    • 1
  1. 1.The International Maize and Wheat Improvement Center (CIMMYT, Int.)Mexico D.F.Mexico
  2. 2.Facultad de AgronomiaUniversidad de la RepublicaMontevideoUruguay
  3. 3.International Center for Agricultural Research in the Dry Areas (ICARDA)AleppoSyrian Arab Republic

Personalised recommendations