, Volume 149, Issue 1–2, pp 145–159 | Cite as

Quantitative trait locus analysis of wheat quality traits

  • James C. Nelson
  • Cristina Andreescu
  • Flavio Breseghello
  • Patrick L. Finney
  • Daisy G. Gualberto
  • Christine J. Bergman
  • Roberto J. Peña
  • Marie Reine Perretant
  • Philippe Leroy
  • Calvin O. Qualset
  • Mark E. Sorrells


Milling and baking quality traits in wheat (Triticum aestivum L.) were studied by QTL analysis in the ITMI population, a set of 114 recombinant inbred lines (RILs) generated from a synthetic-hexaploid (W7985) × bread-wheat (Opata 85) cross. Grain from RILs grown in U.S., French, and Mexican wheat-growing regions was assayed for kernel-texture traits, protein concentration and quality, and dough strength and mixing traits. Only kernel-texture traits showed similar genetic control in all environments, with Opata ha alleles at the hardness locus Ha on chromosome arm 5DS increasing grain hardness, alkaline water retention capacity, and flour yield. Dough strength was most strongly influenced by Opata alleles at 5DS loci near or identical to Ha. Grain protein concentration was associated not with high-molecular-weight glutenin loci but most consistently with the Gli-D2 gliadin locus on chromosome arm 6DS. In Mexican-grown material, a 2DS locus near photoperiod-sensitivity gene Ppd1 accounted for 25% of variation in protein, with the ppd1-coupled allele associated with higher (1.1%) protein concentration. Mixogram traits showed most influence from chromosomal regions containing gliadin or low-molecular-weight glutenin loci on chromosome arms 1AS, 1BS, and 6DS, with the synthetic hexaploid contributing favorable alleles.

Some RI lines showed quality values consistently superior to those of the parental material, suggesting the potential of further evaluating new combinations of alleles from diploid and tetraploid relatives, especially alleles of known storage proteins, for improvement of quality traits in wheat cultivars.


ITMI quality QTL recombinant inbred wheat 



alkaline water retention capacity




International Triticeae Mapping Initiative


polyacrylamide gel electrophoresis


recombinant inbred line


restriction fragment length polymorphism


recombinant inbred


sodium dodecyl sulfate


near-infrared reflectance


softness equivalent


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AACC. 1995. Approved Methods of the American Association of Cereal Chemists, 9th ed. The Association, St. Paul, Minnesota.Google Scholar
  2. Bassett, L.M., R.E. Allan & G.L. Rubenthaler. 1989. Genotype × environment interactions on soft white winter wheat quality. Agron J 81: 955–960.CrossRefGoogle Scholar
  3. Blanco, A., A. Pasqualone, A. Troccoli, N. Di Fonzo & R. Simeone. 2002. Detection of grain content QTLs across environments in tetraploid wheat. Plant Mol Biol 48: 615–623.PubMedCrossRefGoogle Scholar
  4. Börner, A., E. Schumann, A. Fürste, H. Cöster, B. Leithold, M.S. Röder & W.E. Weber. 2002. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (triticum aestivum l.). Theor Appl Genet 105: 921–936.PubMedCrossRefGoogle Scholar
  5. Branlard, G. & M. Dardevet. 1985a. Diversity of grain proteins and bread wheat quality I. Correlation between gliadin bands and flour quality characteristics. J Cereal Sci 3: 329–344.Google Scholar
  6. Branlard, G. & M. Dardevet. 1985b. Diversity of grain protein and bread wheat quality II. Correlation between high molecular weight subunits of glutenin and flour quality characteristics. J Cereal Sci 3: 345–354.Google Scholar
  7. Campbell, K.G., C.J. Bergman, D.G. Gualberto, J.A. Anderson, M.J. Giroux, G. Hareland, R.G. Fulcher, M.E. Sorrells & P.L. Finney. 1999. Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Sci 39: 1184–1195.CrossRefGoogle Scholar
  8. Campbell, K.G., P.L. Finney, C.J. Bergman, D.G. Gualberto, J.A. Anderson, M.J. Giroux, D. Siritunga, J. Zhu, C. Gendre, C. Roué, A. Vérel & M.E. Sorrells. 2001. Quantitative trait loci associated with milling and baking quality in a soft × hard wheat cross. Crop Sci 41: 1275–1285.CrossRefGoogle Scholar
  9. Campbell, W.P., C.W. Wrigley, P.J. Cressey & C.R. Slack. 1987. Statistical correlations between quality attributes and grain-protein composition for 71 hexaploid wheats used as breeding parents. Cereal Chem 64: 293–299.Google Scholar
  10. Carrillo, J.M., M. Rousset, C.O. Qualset & D.D. Kasarda. 1990. Use of recombinant inbred lines of wheat for study of associations of high-molecular-weight glutenin subunit alleles to quantitative traits. 1. Grain yield and quality prediction tests. Theor Appl Genet 79: 321–330.CrossRefGoogle Scholar
  11. Churchill, G.A. & R.W. Doerge. (1994) Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971.PubMedGoogle Scholar
  12. Cressey, P.J., W.P. Campbell, C.W. Wrigley & W.B. Griffin. 1987. Statistical correlations between quality attributes and grain-protein composition for 60 advanced lines of crossbred wheat. Cereal Chem 64: 299–301.Google Scholar
  13. du Cros, D.L., L.R. Joppa & C.W. Wrigley. 1983. Two-dimensional analysis of gliadin proteins associated with quality in durum wheat: chromosomal location of genes for their synthesis. Theor Appl Genet 66: 297–302.CrossRefGoogle Scholar
  14. Dvorak, J. & K.C. Chen. 1984. Distribution of nonstructural variation between wheat cultivars along chromosome arm 6Bp: evidence from the linkage map and physical map of the arm. Genetics 106: 325–333.PubMedGoogle Scholar
  15. Finney, P.L. & L.C. Andrews. 1986. Revised microtesting for soft wheat quality evaluation. Cereal Chem 63: 177–182.Google Scholar
  16. Gaines, C.S., Kassuba, A. & Finney, P.L. 1996. Using the wire-cut and sugar-snap formula cookie test baking methods to evaluate distinctive soft wheat flour sets: implications for quality testing. Cereal Foods World 41: 155–160.Google Scholar
  17. Groos, C., N. Robert, E. Bervas & G. Charmet. 2003. Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106: 1032–1040.PubMedGoogle Scholar
  18. Guttieri, M.J., C. Becker & E.J. Souza. 2004. Application of wheat meal solvent retention capacity tests within soft wheat breeding populations. Cereal Chem 81: 261–266.Google Scholar
  19. Igrejas, G., P. Leroy, G. Charmet, T. Gaborit, D. Marion & G.Branlard. 2002. Mapping QTLs for grain hardness and puroindoline content in wheat (Triticum aestivum L.). Theor Appl Genet 106: 19–27.PubMedGoogle Scholar
  20. Kearsey, M.J. & A.G.L. Farquhar. 1998. QTL analysis in plants; where are we now? Heredity 80: 137–142.PubMedCrossRefGoogle Scholar
  21. Keim, D.L., J.R. Welsh & R.L. McConnell. 1973. Inheritance of photoperiodic heading response in winter and spring cultivars of bread wheat. Can J Plant Sci 53: 247–250.CrossRefGoogle Scholar
  22. Kerber, E.R. & K.H. Tipples. 1969. Effects of the D genome on milling and baking properties of wheat. Can J Plant Sci 49: 255–263.Google Scholar
  23. Konzak, C.F. 1977. Genetic control of the content, amino acid composition, and processing properties of proteins in wheat. Adv Genet 19: 407–582.PubMedCrossRefGoogle Scholar
  24. Li, W.L., J.C. Nelson, C.Y. Chu, L.H. Shi, S.H. Huang & D.J. Liu. 2002. Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica 125: 357–365CrossRefGoogle Scholar
  25. Mansur, L.M., C.O. Qualset, D.D. Kasarda & R. Morris. 1990. Effects of ‘Cheyenne’ chromosomes on milling & baking quality in ‘Chinese Spring’ wheat in relation to glutenin & gliadin storage proteins. Crop Sci 30: 593–602.CrossRefGoogle Scholar
  26. Marino, C.L., J.C. Nelson, Y.H. Lu, M.E. Sorrells, C.R. Lopes & G.E. Hart. 1996. Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell). Genome 39: 359–366.PubMedGoogle Scholar
  27. Martin, J.M., R.C. Frohberg, C.F. Morris, L.E. Talbert & M.J. Giroux. 2001. Milling and bread baking traits associated with puroindoline sequence type in hard red spring wheat. Crop Sci 41: 228–234.CrossRefGoogle Scholar
  28. McGuire, C.F. & F.H. McNeal. 1974. Quality response of 10 hard red spring wheat cultivars to 25 environments. Crop Sci 14: 175–178.Google Scholar
  29. McIntosh, R.A., Y. Yamazaki, K.M. Devos, J. Dubcovsky, W.J. Rogers & R. Appels. 2003. Catalogue of Gene Symbols for Wheat.
  30. Mingeot, D. & J.M Jacquemin. 1999. Mapping of RFLP probes characterized for their polymorphism on wheat. Theor Appl Genet 98: 1132–1137CrossRefGoogle Scholar
  31. Moonen, J.H.E., A. Scheepstra & A. Graveland. 1983. The positive effect of the high molecular weight subunits 3+10 and 2* of glutenin on the bread-making quality of wheat cultivars. Euphytica 32: 735–742.CrossRefGoogle Scholar
  32. Murphy, J.P., C.A. Griffey, P.L. Finney & S. Leath. 1997. Agronomic and grain quality evaluations of Triticum aestivum × Aegilops tauschii backcross populations. Crop Sci 37: 1960–1965.CrossRefGoogle Scholar
  33. Nelson, J.C., A.E. Van Deynze, E. Autrique, M.E. Sorrells, Y.H. Lu, M. Merlino, M. Atkinson & P. Leroy. 1995a. Molecular mapping of wheat. Homoeologous group 2. Genome 38: 517–524.Google Scholar
  34. Nelson, J.C., M.E. Sorrells, A.E. Van Deynze, Y.H. Lu, M. Atkinson, M. Bernard, P. Leroy, J.D. Faris & J.A. Anderson. 1995b. Molecular mapping of wheat. Major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141: 721–731.Google Scholar
  35. Nieto-Taladriz, M.T., M.R. Perretant & M. Rousset. 1994. Effect of gliadins and HMW and LMW subunits of glutenin on dough properties in the F6 recombinant inbred lines from a bread wheat cross. Theor Appl Genet 88: 81–88.CrossRefGoogle Scholar
  36. Olmos, S., A. Distelfeld, O. Chicaiza, A.R. Schlatter, T. Fahima, V. Echenique & J. Dubcovsky. 2003. Precise mapping of a locus affecting grain protein content in durum wheat. Theor Appl Genet 107: 1243–1251.PubMedCrossRefGoogle Scholar
  37. Payne, P.I., L.M. Jackson, E.A. Holt & C.N. Law. 1984. Wheat storage proteins: Their genetics and their potential for manipulation by plant breeding. Phil Trans Royal Soc Lond Ser B 304: 359–371.Google Scholar
  38. Payne, P.I., K. Corfield, L.M. Holt & J.A. Blackman. 1981. Correlations between the inheritance of certain high molecular weight subunits of glutenin and bread-making quality in wheats of related pedigree. J Sci Food Agric 32: 51–60.Google Scholar
  39. Payne, P.I., J.A. Seekings, A.J. Worland, M.G. Jarvis & L.M. Holt. 1987. Allelic variation of glutenin subunits and gliadins and its effect on breadmaking quality in wheat: analysis of F5 progeny from Chinese Spring × Chinese Spring Hope 1A. J Cereal Sci 6: 103–118.CrossRefGoogle Scholar
  40. Peña, R.J., A. Amaya, S. Rajaram & A. Mujeeb-Kazi. 1990. Variation in quality characteristics associated with some spring 1B/1R translocation wheats. J Cereal Sci 12: 105–112.Google Scholar
  41. Perretant, M.R., T. Cadalen, G. Charmet, P. Sourdille, P. Nicolas, C. Boeuf, M.H. Tixier, G. Branlard, S. Bernard & M. Bernard. 2000. QTL analysis of bread-making quality in wheat using a doubled haploid population. Theor Appl Genet 100: 1167–1175.CrossRefGoogle Scholar
  42. Pomeranz, Y. & P.C. Williams. 1990. Wheat hardness: its genetic, structural and biochemical background, measurements and significance. In: Y. Pomeranz (Ed.), Advances in Cereal Science and Technology, 10: 471–544. AACC, St. Paul.Google Scholar
  43. Prasad, M., N. Kumar, P.L. Kulwal, M.S. Röder, H.S. Balyan, H.S. Dhaliwal & P.K. Gupta. 2003. QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor Appl Genet 106: 659–667.PubMedGoogle Scholar
  44. Pugsley, A.T. 1983. The impact of plant physiology on Australian wheat breeding. Euphytica 32: 743–748.CrossRefGoogle Scholar
  45. Quick, J.S. & R.D. Crawford. 1983. Bread baking potential of new durum wheat cultivars. In S. Sakamoto (Ed.), Proc. 6th Int. Wheat Genet. Symp., pp. 851–856. Kyoto Univ., Kyoto, Japan.Google Scholar
  46. Röder, M.S., V. Korzun, K. Wendehake, J. Plaschke, M.H. Tixier, P. Leroy & M.W. Ganal. 1998. A microsatellite map of wheat. Genetics 149: 2007–2023PubMedGoogle Scholar
  47. Rousset, M., J.M. Carrillo, C.O. Qualset & D.D. Kasarda. 1992. Use of recombinant inbred lines of wheat for study of associations of high-molecular-weight glutenin subunit alleles to quantitative traits. 2. Milling and bread-baking quality. Theor Appl Genet 83: 403–412.CrossRefGoogle Scholar
  48. Schön, C.C, H.F. Utz, S. Groh, B. Truberg, S. Openshaw & A.E. Melchinger. 2004. Quantitative trait locus mapping based on resampling in a vast testcross experiment and its relevance to quantitative genetics for complex traits. Genetics 167: 485–498.PubMedCrossRefGoogle Scholar
  49. Sourdille, P., M.R. Perretant, G. Charmet, P. Leroy, M.F. Gautier, P. Joudrier, J.C. Nelson, M.E. Sorrells & M. Bernard. 1996. Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theor Appl Genet 93: 580–586.Google Scholar
  50. Sourdille, P., M.H. Tixier, G. Charmet, G. Gay, T. Cadalen, S. Bernard & M. Bernard. 2000. Location of genes involved in ear compactness in wheat (Triticum aestivum) by means of molecular markers. Mol Breed 6: 247–255CrossRefGoogle Scholar
  51. Symes, K.J. 1965. The inheritance of grain hardness in wheat as measured by the particle-size index. Aust J Agric Res 16: 113–123.CrossRefGoogle Scholar
  52. Van Deynze, A.E., J. Dubcovsky, K.S. Gill, J.C. Nelson, M.E. Sorrells, J. Dvorak, B.S. Gill, E.S. Lagudah, S.R. McCouch & R. Appels. 1995. Molecular-genetic maps for chromosome 1 in Triticeae species and their relation to chromosomes in rice and oats. Genome 38: 47–59.Google Scholar
  53. Walker, A.E. & C.E. Walker. 1992. Documentation and Users Instructions for MIXSMART (Registered). Computerized Data Acquisition and Analysis for the Mixograph. National Mfg., Lincoln, Nebraska.Google Scholar
  54. Wang, S., C.J. Basten & Z.-B. Zeng. 2004. Windows QTL Cartographer v2.0.
  55. Weegels, P.L., R.J. Hamer & J.D. Schofield. 1996. Critical review: Functional properties of wheat glutenin. J Cereal Sci 23: 1–18.CrossRefGoogle Scholar
  56. William, M.D.H.M., R.J. Peña & A. Mujeeb-Kazi. 1993. Seed protein and isozyme variations in Triticum tauschii (Aegilops squarrosa). Theor Appl Genet 87: 257–263.CrossRefGoogle Scholar
  57. Worland, A.J., S. Petrovic & C.N. Law. 1988. Genetic analysis of chromosome 2D of wheat. II. The importance of this chromosome to Yugoslavian varieties. Plant Breed 100: 247–259.CrossRefGoogle Scholar
  58. Wrigley, C.W. & K.W. Shepherd. 1973. Electrofocusing of grain proteins from wheat genotypes. Ann NY Acad Sci 209: 154–162.PubMedGoogle Scholar
  59. Yamazaki, W.T., J.R. Donelson & L.W. Briggle. 1968. Microtests for soft wheat quality evaluation. Crop Sci 8: 199–200.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • James C. Nelson
    • 1
  • Cristina Andreescu
    • 1
  • Flavio Breseghello
    • 3
  • Patrick L. Finney
    • 2
  • Daisy G. Gualberto
    • 2
  • Christine J. Bergman
    • 2
  • Roberto J. Peña
    • 4
  • Marie Reine Perretant
    • 5
  • Philippe Leroy
    • 5
  • Calvin O. Qualset
    • 6
  • Mark E. Sorrells
    • 3
  1. 1.Department of Plant PathologyKansas State UniversityManhattanUSA
  2. 2.US Department of Agriculture, Agricultural Research Service, Soft Wheat Regional Quality LaboratoryOhio Agricultural Research and Development Center, Ohio State UniversityWoosterUSA
  3. 3.Department of Plant Breeding and GeneticsCornell UniversityIthacaUSA
  4. 4.International Maize and Wheat Improvement Center (CIMMYT, Int.)MexicoD.F. Mexico
  5. 5.UMR 1095 INRA-UBP Amélioration & Santé des PlantesClermont-FerrandFrance
  6. 6.Genetic Resources Conservation ProgramUniversity of CaliforniaDavisU.S.A.

Personalised recommendations