, Volume 149, Issue 1–2, pp 105–111

A new QTL for Ascochyta blight resistance in an RIL population derived from an interspecific cross in chickpea

  • M. J. Cobos
  • J. Rubio
  • R. N. Strange
  • M. T. Moreno
  • J. Gil
  • T. Millan


A linkage map in a population of recombinant inbred lines (RILs) derived from an interspecific cross between Cicer arietinum (ILC72) × Cicer reticulatum (Cr5-10), resistant and susceptible to blight, caused by Ascochyta rabiei, respectively, was obtained using RAPD, ISSR, STMS, isozyme (Pdf6) and flower colour (pink/white) markers. The map comprised ten linkage groups and covered a distance of 601.2 cM. When the population was evaluated for reaction to Ascochyta blight under field conditions by determining the Area Under the Disease Progress Curve (AUDPC), the distribution of frequencies was bimodal: most of the lines had an intermediate reaction, fewer were nearly as susceptible as the susceptible parent and none had values close to the resistant parent. A QTL explaining 28% of the variation in resistance was located in linkage group 2 (LG2). Five RAPD markers on this linkage group showed significant association with resistance (OPX04372, UBC881621, OPAI09746, OPAI09352 and OPAC12700) and the major QTL peak lay midway between OPAI09746 and UBC881621 which are 14.1 cM apart. Contrary to other studies, no association of linkage group 4 with resistance was found. The QTL for resistance to Ascochyta blight in this study is therefore different from QTLs for this character reported in other interspecific crosses and may be the same as that reported in linkage group 2 in intraspecific crosses where genes for resistance to races of Fusarium oxysporum f. sp. ciceri, causing wilt, are also located.


Cicer arietinum chickpea linkage map QTL Ascochyta rabiei 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acikgoz, N., M. Karaca, C. Er & K. Meyveci, 1994. Chickpea and lentil production in Turkey. In: F.J. Muehlbauer & W.J. Kaiser, (Eds.), Expanding the production and use of cool season food legumes, pp. 388–398. Kluver Academic Publ., Dordrecht, The Netherland.Google Scholar
  2. Campbell, C.L. & L.V. Madden, 1990. Temporal analysis of epidemics. I. Description and comparison of disease progress curves. In: Introduction to Plant Disease Epidemiology, pp. 161–202. Wiley, New York.Google Scholar
  3. Cardy, B.J., C.W. Stuber & M.M. Goodman, 1980. Techniques for starch-gel electrophoresis of enzymes from maize (Zea mays L.) North Carolina State University. Department of statistics. Mimeo series. Raleigh.Google Scholar
  4. Cho, S., W. Chen & F.J. Muehlbauer, 2004. Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to ascochyta blight. Theor Appl Genet 109: 733–739.PubMedCrossRefGoogle Scholar
  5. Churchill, G.A. & R.W. Doerge, 1994. Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971.PubMedGoogle Scholar
  6. Collard, B.C.Y., E.C.K. Pang, P.K. Ades & P.W.J. Taylor, 2003. Preliminary investigation of QTLs associated with seedling resistance to ascohyta blight from Cicer echinospermum, a wild relative of chickpea. Theor Appl Genet 107: 719–729.PubMedCrossRefGoogle Scholar
  7. Flandez-Galvez, H., R. Ford, E.C.K. Pang & P.W.J. Taylor, 2003. An intraspecific linkage map of the chickpea (Cicer arietinum L.) genome based on sequence tagged microsatellite site and resistance gene analog markers. Theor Appl Genet 106: 1447–1456.PubMedGoogle Scholar
  8. Hüttel, B., P. Winter, K. Weising, W. Choumane, F. Weigand & G. Kahl, 1999. Sequence-tagged microsatellite-site markers for chickpea (Cicer arietinum L.). Genome 42: 210–217.PubMedCrossRefGoogle Scholar
  9. Jimenez-Diaz, R.M., P. Crino, M.H. Halila, C. Mosconi & A. Trapero-Casas, 1993. Screening for resistance to fusarium wilt and ascochyta blight in chickpea. In: K.B. Singh & M.C. Saxena (Eds.), Breeding for stress tolerance in cool-season food legumes, pp. 77–95. ICARDA, Jonh Wiley & Sons, Chichester, UK.Google Scholar
  10. Johnson, H.W. & R.L. Bernard, 1962. Soybean genetic and breeding. Adv. Agrom. 14:149–221.CrossRefGoogle Scholar
  11. Kanazin, V., L.F. Marek & R.C. Shoemaker, 1996. Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA 93: 11746–11750.PubMedCrossRefGoogle Scholar
  12. Kosambi, D.D. 1944. The estimation of map distance from recombination values. Ann Eugen 12: 172–175.Google Scholar
  13. Kusmenoglu, I., F.J. Muehlbauer & K. Kazan, 1992. Inheritance of isozyme variation in ascochyta blight resistant chickpea lines. Crop Sci 32: 121–127.CrossRefGoogle Scholar
  14. Lander, E.S., P. Green, J. Abrahamson, A. Barlow, J. Daly, S.E. Lincoln & L. Newsburg, 1987. MAPMAKER: a interactive computer package for constructing primary genetic linkage maps of experimental populations. Genomics 1: 174–181.PubMedCrossRefGoogle Scholar
  15. Lander, E.S. & D. Botstein, 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.PubMedGoogle Scholar
  16. Lassner, M.W., P. Peterson & J.I. Yoder, 1989. Simultaneous amplification of multiple DNA fragments by polymerase chain reaction in the analysis of transgenic plants and their progeny. Plant Mol Biol Rep 7: 116–128.Google Scholar
  17. MillÁn, T., J. Rubio, M. Iruela, K. Daly, J.I. Cubero & J. Gil, 2003. Markers associated with Ascochyta blight resistance in chickpea an their potential in marker-assisted selection. Field Crops Research 84: 373–384.CrossRefGoogle Scholar
  18. Nene, Y.L. 1984. A review of Ascochyta blight of chickpea (Cicer arietinum L). In: M.C. Saxena & K.B. Singh (Eds.), Ascochyta blight and winter sowing of chickpea pp. 17–34. Martinus, Nijhoff., The Hague, The Netherlands.Google Scholar
  19. Nene, Y.L. & M.V. Reddy, 1987. Chickpea diseases and their control. In: M.C. Saxena & K.B. Singh (Eds.), The Chickpea, pp 233–270. CAB Int., Oxon, UK.Google Scholar
  20. Rakshit, S., P. Winter, M. Tekeoglu, J. Juarez Muñoz, T. Pfaff, A.M. Benko-Iseppon, F.J. Muehlbauer & G. Kahl, 2003. DAF marker tightly linked to a major locus for Ascochyta blight resistance in chickpea (Cicer arietinum L.). Euphytica 132: 23–30.CrossRefGoogle Scholar
  21. Ratnaparkhe, M.B., D.K. Santra, A. Tullu & F.J. Muehlbauer, 1998. Inheritance of inter-simple-sequence-repeat polymorphisms and linkage with a fusarium wilt resistance gene in chickpea. Theor Appl Genet 96: 348–353.CrossRefGoogle Scholar
  22. Santra, D.K., M. Tekeoglu, M. Ratnaparkhe, W.J. Kaiser & F.J. Muehlbauer, 2000. Identification and mapping of QTLs conferring resistance to ascochyta blight in chickpea. Crop Sci 40: 1606–1612.CrossRefGoogle Scholar
  23. Sharma, K.D., P. Winter, G. Kahl & F.J. Muehlbauer, 2004. Molecular mapping of Fusarium oxysporum f. sp. ciceris race 3 resistance gene in chickpea. Theor Appl Genet 108: 1243–1248.Google Scholar
  24. Simon, C.J. & F.J. Muehlbauer, 1997. Construction of a chickpea linkage map and its comparison with maps of pea and lentil. J Hered 88: 115–119.Google Scholar
  25. Singh, K.B., G.C. Hawtin, Y.L. Nene & M.V. Reddy, 1981. Resistance in chickpeas to Ascochyta rabiei. Plant Dis 65: 586–587.CrossRefGoogle Scholar
  26. Singh, K.B. & M.V. Reddy, 1996. Improving chickpea yield by incorporating resistance to ascochyta blight. Theor Appl Genet 92: 509–515.CrossRefGoogle Scholar
  27. Tekeoglu, M., P.N. Rajesh & F.J. Muehlbauer, 2002. Integration of sequence tagged microsatellite sites to the chickpea genetic map. Theor Appl Genet 105: 847–854.PubMedCrossRefGoogle Scholar
  28. Torres, A.M., N.F. Weeden & A. Martin, 1993. Linkage among isozyme, RFLP and RAPD markers in Vicia faba. Theor Appl Genet 85: 935–945.CrossRefGoogle Scholar
  29. Udupa, S.M. & M. Baum, 2003. Genetic dissection of pathotype-specific resistance to ascochyta blight disease in chickpea (Cicer arietinum L.) using microsatellite markers. Theor Appl Genet 106: 1196–1202.PubMedGoogle Scholar
  30. Van Ooijen, J.W. 1992. Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet 84: 803–811.CrossRefGoogle Scholar
  31. Wang, S., C.J. Basten & Z.B. Zeng, 2004. Windows QTL Cartographer 2.0. Department of Statistics, North Carolina State University. Raleigh N.C. (
  32. Welsh, J. & M. McClellan, 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18: 7213–7218.PubMedGoogle Scholar
  33. Williams, S.J., A.R. Kubelik, K.J. Livak, A. Rafalski & S.V. Tingey, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18: 6531–6535.PubMedGoogle Scholar
  34. Winter, P., A.M. Benko-Iseppon, B. Hüttel, M. Ratnaparkhe, A. Tullu, G. Sonnante, T. Pfaff, M. Tekeoglu, D. Santra, V.J. Sant, P.N. Rajesh, G. Kahl & F.J. Muehlbauer, 2000. A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum x C. reticulatum cross: localization of resistance gene for fusarium wilt races 4 and 5. Theor Appl Genet 101: 1155–1163.Google Scholar
  35. Winter, P., T. Pfaff, S.M. Udupa, B. Hüttel, P.C. Sharma, S. Sahi, R. Arreguin-Espinoza, F. Weigand, F.J. Muehlbauer & G. Kahl, 1999. Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol Gen Genet 262: 90–101.PubMedCrossRefGoogle Scholar
  36. Yu, Y.G., G.R. Buss, & M.A. Saghai Maroof, 1996. Isolation of a superfamily of candidate resistance genes in soybean based on a conserved nucleotide binding site. Proc Natl Acad Sci USA 93: 11751–11756.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • M. J. Cobos
    • 2
  • J. Rubio
    • 2
  • R. N. Strange
    • 3
  • M. T. Moreno
    • 2
  • J. Gil
    • 1
  • T. Millan
    • 1
  1. 1.Departamento de GenéticaUniversidad de CórdobaCórdobaSpain
  2. 2.Area de Mejora y Biotecnología, IFAPACórdobaSpain
  3. 3.Department of BiologyUniversity College LondonLondonUK

Personalised recommendations