, Volume 146, Issue 3, pp 239–251 | Cite as

Fingerprinting temperate japonica and tropical indica rice genotypes by comparative analysis of DNA markers

  • J. U. Jeung
  • H. G. Hwang
  • H. P. Moon
  • K. K. Jena


This paper describes the relative efficiency of three marker systems, RAPD, ISSR, and AFLP, in terms of fingerprinting 14 rice genotypes consisting of seven temperatejaponica rice cultivars, three indica near-isogenic lines, three indica introgression lines, and one breeding line of japonica type adapted to high-altitude areas of the tropics with cold tolerance genes. Fourteen RAPD, 21 ISSR, and 8 AFLP primers could produce 970 loci, with the highest average number of loci (92.5) generated by AFLP. Although polymorphic bands in the genotypes were detected by all marker assays, the AFLP assay discriminated the genotypes effectively with a robust discriminating power (0.99), followed by ISSR (0.76) and RAPD (0.61). While significant polymorphism was detected among the genotypes of japonica and indica through analysis of molecular variance (AMOVA), relatively low polymorphism was detected within the genotypes of japonica rice cultivars. The correlation coefficients of similarity were significant for the three marker systems used, but only the AFLP assay effectively differentiated all tested rice lines. Fingerprinting of backcross-derived resistant progenies using ISSR and AFLP markers easily detected progenies having a maximum rate of recovery for the recurrent parent genome and suggested that our fingerprinting approach adopting the ‘undefined-element-amplifying’ DNA marker system is suitable for incorporating useful alleles from the indica donor genome into the genome of temperate japonica rice cultivars with the least impact of deleterious linkage drag.


rice japonica indica DNA fingerprinting DNA markers AMOVA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amante-Bordeos, A., L.A. Sitch, R. Nelson, R.D. Dalmacio, N.P. Olivia, H. Aswidinnoor & H. Leung, 1992. Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice, Oryza sativa. Theor Appl Genet 84: 345–354.Google Scholar
  2. Belaj, A., Z. Satovic, G. Cipriani, L. Baldoni, R. Testolin, L. Rallo & I. Trujillo, 2003. Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theor Appl Genet 107: 736–774.CrossRefPubMedGoogle Scholar
  3. Benham J, J.U. Jeung, M. Jasieniuk, V. Kanazin & K. Blake, 1999. Genographer: a graphical tool for automated fluorescent AFLP and microsatellite analysis. J Agric Genomics 4.Google Scholar
  4. Castiglioni, P., P. Ajmone-Marsan, R. van Wijk & M. Motto, 1999. AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group distribution. Theor Appl Genet 99: 425–431.CrossRefGoogle Scholar
  5. Excoffier, L., P.E. Smouse & J.M. Quattro, 1992. Analysis of molecular variance inferred from metric distance among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.PubMedGoogle Scholar
  6. Finnegan, E.J., R.K. Genger, W.J. Peacock & E.S. Dennis, 1998. DNA methylation in plants. Plant Mol Biol 49: 223–247.CrossRefGoogle Scholar
  7. Garris, A.J., T.H. Tai, J. Coburn, S. Kresovich & S. McCouch, 2005. Genetic structure and diversity in Oryza sativa L. Genetics 169: 1631–1638.PubMedCrossRefGoogle Scholar
  8. Huang, N., E.R. Angeles, J. Domingo, G. Magpantay, S. Singh, G. Zhang, N. Kumaravadivel, J. Bennett & G.S. Khush, 1997. Pyramiding of bacterial blight resistance genes in rice: marker-aided selection using RFLP and PCR. Theor Appl Genet 95: 313–320.CrossRefGoogle Scholar
  9. Jena, K.K., D.S. Multani & G.S. Khush, 1990. Monogenic alien addition lines of Oryza australiensis and alien gene transfer. Genetics II: 728–729.Google Scholar
  10. Jena, K.K., I.C. Pasalu, Y.K. Rao, Y. Varalaxmi, K. Krishnaiah, G.S. Khush & G. Kochert, 2003. Molecular tagging of a gene for resistance to brown planthopper in rice (Oryza sativa L.). Euphytica 129: 81–88.CrossRefGoogle Scholar
  11. Mackill, D.J., 1995. Classifying japonica rice cultivars with RAPD markers. Crop Sci 35: 889–894.CrossRefGoogle Scholar
  12. McCouch, S.R., L. Teytelman, Y. Xu, K.B. Labos, K. Clare, M. Waltom, B. Fu, R. Maghirang, Z. Li, Y. Xing, Q. Zhang, I. Kono, M. Yano, R. Fjellstom, G. DeClerck, D. Schneider, S. Cartinhour, D. Ware & L. Stein, 2002. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9: 199–207.CrossRefPubMedGoogle Scholar
  13. Murray, M. & W. Thompson, 1980. Rapid isolation of high molecular weight plant DNA. Nucl Acid Res 8: 4321.CrossRefGoogle Scholar
  14. Panaud, O., X. Chen & S.R. McCouch, 1996. Development of microsatellite markers and characterization of SSLP in rice. Mol Gen Genet 252: 597–607.PubMedGoogle Scholar
  15. Ren, F., B.R. Lu, S. Li, J. Huang & Y. Zhu, 2003. A comparative study of genetic relationships among the AA genome Oryza species using RAPD and SSR markers. Theor Appl Genet 108: 113–120.CrossRefPubMedGoogle Scholar
  16. Rohlf, F.J., 1998. NTSYS-PC. Numerical taxonomy and multivariate analysis system, version 2.00. Exter Software, Setauket, NY.Google Scholar
  17. Russell, J.R., J.D. Fuller, M. Macaulay, B.G. Hatz, A. Jahoor, W. Powell & R. Waugh, 1997. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet 95: 714–722.CrossRefGoogle Scholar
  18. Schneider, S., D. Roessli & L. Excoffier, 2000. Arlequin ver. 2.000: A software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.Google Scholar
  19. Tessier, C., J. David, P. This, J.M. Boursiquot & A. Charrier, 1999. Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L. Theor Appl Genet 98: 171–177.CrossRefGoogle Scholar
  20. Virk, P.S., J. Zhu, H.J. Newbury, G.J. Bryan, M.T. Jackson & B.V. Ford-Lloyd, 2000. Effectiveness of different classes of molecular marker for classifying and revealing variation in rice (Oryza sativa) germplasm. Euphytica 112: 275–284.CrossRefGoogle Scholar
  21. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23: 4407–4414PubMedCrossRefGoogle Scholar
  22. Xu, K., X. Xu, P.C. Ronald & D.J. Mackill, 2000. A high-resolution linkage map of the vicinity of the rice submergence tolerance locus, Sub1. Mol Gen Genet 263: 681–689.CrossRefPubMedGoogle Scholar
  23. Yeo, U.S. & J.K. Shon, 2001. Linkage analysis between some agronomic traits and resistance gene to brown planthopper in rice. Korean J Breed 33: 287–293.Google Scholar
  24. Zhu, J.H., P. Stephenson, D.A. Laurie, W. Li, D. Tang & M.D. Gale, 1999. Towards rice genome scanning by map-based AFLP fingerprinting. Mol Gen Genet 261: 184–195.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • J. U. Jeung
    • 1
  • H. G. Hwang
    • 2
  • H. P. Moon
    • 2
  • K. K. Jena
    • 1
    • 3
  1. 1.Plant Breeding, Genetics, and Biotechnology DivisionInternational Rice Research InstituteMetro ManilaPhilippines
  2. 2.Genetics and Breeding DivisionNational Institute of Crop Science, RDASuwonRepublic of Korea
  3. 3.IRRI-Korea OfficeNational Institute of Crop Science, RDASuwonRepublic of Korea

Personalised recommendations