Euphytica

, Volume 141, Issue 1–2, pp 181–190

Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh)

  • Fabrizio Costa
  • Sara Stella
  • W. Eric Van de Weg
  • Walter Guerra
  • Michela Cecchinel
  • Joseph Dallavia
  • Bernie Koller
  • Silviero Sansavini
Article

Abstract

Shelf life determines the economic life time of mature apples, which can be either freshly harvested or stored. Good shelf life is highly associated with a slow decrease of fruit firmness at room temperature. Apple is a climacteric fruit, in which loss of firmness seems to be physiologically related to ethylene. Ethylene’s biosynthetic pathway is controlled by two large gene families coding for 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxydase (ACO).

In this study, one ACS and one ACO gene were examined for their effect on ethylene production and shelf life in apple using gene specific molecular marker, and have also been positioned on a molecular marker linkage map. The ACO marker was developed in this research and mapped on linkage group (LG) 10 of the crosses Prima × Fiesta and Fuji × Mondial Gala, within the 5% border of a previously identified fruit firmness QTL [Theor Appl Genet 100 (2000) 1074]. We denoted this locus as Md-ACO1. In addition, we mapped the previously developed Md-ACS1 marker [Theor Appl Genet 101 (2000) 742] on LG15.

Studies on the cross Fuji × Braeburn revealed that Md-ACS1 and Md-ACO1 independently affect the internal ethylene concentration (IEC) as well as shelf life of apple, Md-ACS1 having the strongest effect. Descendants homozygous for Md-ACS1-2 and Md-ACO1-1 showed to have the lowest ethylene production as well as superior shelf-life. These two genes are candidates to be included in marker assisted breeding.

Key words

ACO ACS ethylene production fruit softening marker assisted breeding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, L. & D. Grierson, 2002 Ethylene biosynthesis and action in tomato: A model for climacteric fruit ripening. J Exp Bot 53: 2039–2055.CrossRefPubMedGoogle Scholar
  2. Atkinson, R.G., K.M. Bolitho, M.A. Wright, T. Iturriagagoitia-Bueno, S.J. Reid & G.S. Ross, 1998 Apple ACC-oxidase and polygalacturonase: Ripening-specific gene expression and promoter analysis in transgenic tomato. Plant Mol Biol 38(3): 449–460.Google Scholar
  3. Barry, C.S., M.I. Llop-Topus & D. Grierson, 2000 The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system – 1 to system – 2 ethylene synthesis in tomato. Plant Physiol 123: 979–986.CrossRefGoogle Scholar
  4. Bleecker, A.B. & H. Kende, 2000 Ethylene: A gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16: 1–18.CrossRefPubMedGoogle Scholar
  5. Dong, J.G., W.T. Kim, W.K. Yip, G.A. Thompson, L. Li, A.B. Bennett & S.F. Yang, 1991 Cloning of a cDNA encoding 1-aminocyclopropane-1-carboxylate synthase and expression of its mRNA in ripening apple fruit. Planta 185: 38–45.Google Scholar
  6. Doyle, J.J. & J.L. Doyle, 1989 Isolation of plant DNA from fresh tissue. Focus 12: 13–15.Google Scholar
  7. Gianfranceschi, L., & V. Soglio in press. The European project HiDRAS: Innovative multidisciplinary approaches to breed high-quality disease resistant Apples. Acta Hortic.Google Scholar
  8. Giovannoni, J. 2001 Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52: 725–749.Google Scholar
  9. Harada, T., T. Sunako, Y. Wakasa, J. Soejima, T. Satoh & M. Niizeki, 2000 An allele of the 1-aminocyclopropane-1-carboxylate synthase gene (Md-ACS1) accounts for the low level of ethylene production in climacteric fruits of some apple cultivars. Theor Appl Genet 101: 742–746.Google Scholar
  10. Hrazdina, G., E. Kiss, Z. Galli, C. RosenField, J.L. Norelli & H.S. Aldwincle, 2003 Down regulation of ethylene production in Royal Gala apples. Acta Hortic 628: 239–251.Google Scholar
  11. Kende, H. 1993 Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44: 283–307.CrossRefGoogle Scholar
  12. King, G.J., C. Maliepaard, J.R. Lynn, F.H. Alston, C.E. Durel, K.M. Evans, B. Griffon, F. Laurens, A.G. Manganaris, E. Schrevens, S. Tartarini & J. Verhaegh, 2000 Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill.). Theor Appl Genet 100: 1074–1084.Google Scholar
  13. Le Hir, H., A. Nott & M.J. Melissa, 2003 How introns influence and enhance eukaryotic gene expression. Trends Biochem Sci 28: 215–220.CrossRefPubMedGoogle Scholar
  14. Liebhard, R., B. Koller, L. Gianfranceschi & C. Gessler, 2003 Creating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theor Appl Genet 106: 1497–1508.PubMedGoogle Scholar
  15. Maliepaard, C., F.H. Alston, G. Van Arkel, L.M. Brown, E. Chevreau, F. Dunemann, K.M. Evans, S. Gardiner, P. Guilford, A.W. Van Heusden, J. Janse, F. Laurens, J.R. Lynn, A.G. Manganaris, A.P.M. den Nijs, N. Periam, E. Rikkerink, P. Roche, C. Ryder, S. Sansavini, H. Schmidt, S. Tartarini, J.J. Verhaegh, M. Vrielink-van Ginkel & G.J. King, 1998 Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97: 60–73.CrossRefGoogle Scholar
  16. Maliepaard, C., M.J. Silanpää, J.W. Van Ooijen, R.C. Jansen & E. Arjas, 2001 Bayesian versus frequentitst analysis of multiple quantitative trait loci with an application to an outbred apple cross. Theor Appl Genet 103: 1243–1253.Google Scholar
  17. McMurchie, E.J., W.B. McGlasson & I.L. Eaks, 1972 Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature 237: 235–236.Google Scholar
  18. Nakatsuka, A., S. Murtachi, H. Okunishi, S. Shiomi, R. Nakano, Y. Kubo & A. Inaba, 1998 Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol 118: 1295–1305.CrossRefGoogle Scholar
  19. Nott, A., S.H. Meislim & M.J. Moore, 2003 A quantitative analysis of intron effects on mammalian gene expression. RNA 9: 607–617.Google Scholar
  20. Oetiker, J.H. & S.F. Yang, 1995 The role of ethylene in fruit ripening. Acta Hortic 398: 167–178.Google Scholar
  21. Picton, S., J.E. Gray & D. Grierson, 1995 Ethylene genes and fruit ripening. Plant Hormones, pp. 372–394. Kluwer Academic Publishers, Dordrecht.Google Scholar
  22. Rose, J.K.C., H.H. Lee & A.B. Bennett, 1997 Expression of a divergent expansin gene is fruit specific and ripening regulated. Proc Natl Acad Sci USA 94: 5955–5960.CrossRefGoogle Scholar
  23. Rosenfield, C., E. Kiss & G. Hrazdina, 1996 MdACS-2 (Accession No. U73815) and MdACS-3 (Accession No. U73816): Two new 1-aminocyclopropane-1-carboxylate synthase in ripening apple fruit (PGR96-122). Plant Physiol 112: 1735.Google Scholar
  24. Sunako, T., W. Sakuraba, M. Senda, S. Akada, R. Ishikawa, M. Niizeki & T. Harada, 1999 An allele of the ripening-specific 1-amino-cyclopropane-1-carboxylic acid synthase (ACS1) in apple fruit with a long storage life. Plant Physiol 119: 1297–1303.Google Scholar
  25. Sunako, T., R. Ishikawa, M. Senda, S. Akada, M. Niizeki & T. Harada, 2000 MdACS-5A (Accession No. AB034992) and 5B (Accession No. AB034993), two wound-responsive genes encoding 1-aminocyclopropane-1-carboxylate synthase in apple. (PGR00-030). Plant Physiol 122: 620.Google Scholar
  26. Van Ooijen, J.W. & R.E. Voorrips, 2001 JoinMap® Version 3.0, Software for the Calculation of Genetic Linkage Maps. Plant Research International, Wageningen, The Netherlands.Google Scholar
  27. Voorrips, R.E. 2001 MapChart Version 2.0: Windows Software for the Graphical Presentation of Linkage Maps and QTLs. Plant Research International, Wageningen, The Netherlands.Google Scholar
  28. Yang, S.F. & E. Hoffman, 1984 Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35: 155–189.CrossRefGoogle Scholar
  29. Yang, S.F. 1985 Biosynthesis and action of ethylene. HortScience 20: 41–45.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Fabrizio Costa
    • 1
  • Sara Stella
    • 1
  • W. Eric Van de Weg
    • 2
  • Walter Guerra
    • 3
  • Michela Cecchinel
    • 3
  • Joseph Dallavia
    • 3
  • Bernie Koller
    • 4
  • Silviero Sansavini
    • 1
  1. 1.Dipartimento di Colture ArboreeUniversity of BolognaBolognaItaly
  2. 2.Plant Research InternationalWageningenThe Netherlands
  3. 3.Centro per la Sperimentazione Agraria e Forestale LaimburgVadena (BZ)Italy
  4. 4.Institute of Plant Science, Swiss Federal Institute of TechnologyZürichSwitzerland

Personalised recommendations