, Volume 144, Issue 1–2, pp 85–89 | Cite as

Genome discrimination and chromosome pairing in the Hordeum chilense × Aegilops tauschii amphiploid

  • Ana Carvalho
  • Henrique Guedes-Pinto
  • Antonío Mártín
  • Pat Heslop-Harrison
  • José Lima-BritoEmail author
Short Commmunication


Tritordeum (X Tritordeum Ascherson et Graebner) is a synthetic amphiploid belonging to the Triticeae tribe, which resulted from crosses between Hordeum chilense and wheat. It presents useful agronomic traits that could be transferred to wheat, widening its genetic basis.

In situ hybridisation with total genomic DNA from H. chilense and cloned, repetitive DNA sequences (pTa71 and pAs1) probes were used to discriminate the parental origin of all chromosomes, to analyse the chromosome pairing and to identify the chromosomes in pollen mother cells (PMCs) at metaphase I of the tritordeum line HT251 (HchHchDD, 2n = 4x = 28).

The H. chilense total genomic DNA and the ribosomal sequence pTa71 probes, allowed the unequivocal discrimination of the 14 chromosomes of Hch genome-origin and the 14 chromosomes of D genome-origin.

Chromosome pairing analysis revealed meiotic irregularities such as reduced percentage of PMCs with complete homologous pairing, high frequency of univalents, most of H. chilense-origin and a reduced frequency of intragenomic multivalents from both genomes. The H. chilense genome revealed high meiotic instability.

After individual chromosome identification at metaphase I with the pAs1 probe, we found the occurrence of pairing between chromosomes of different homoeology groups. The possible interest of the tetraploid tritordeum in the improvement of other Triticeae species is also discussed.

Key Words

Aegilops tauschii Hordeum chilense in situ hybridisation meiotic pairing tritordeum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cabrera, A. & A. Martín, 1991. Cytology and morphology of the amphiploid Hordeum chilense (4x) × Aegilops squarrosa (4x). Theor Appl Genet 81: 758–760.CrossRefGoogle Scholar
  2. Cabrera, A., A. Martín & F. Barro, 2002. In-situ comparative mapping (ISCM) of Glu-1 loci in Triticum and Hordeum. Chrom Res 10: 49–54.CrossRefPubMedGoogle Scholar
  3. Chen, Q., R.L. Conner, A. Laroche & F. Ahmad, 2001. Molecular cytogenetic evidence for a high level of chromosome pairing among different genomes in Triticum aestivumThinopyrum intermedium hybrids. Theor Appl Genet 102: 847–852CrossRefGoogle Scholar
  4. Fernández, J.A., J. González, & N. Jouve, 1985. Meiotic pairing of the amphiploid Hordeum chilense × T. turgidum conv. durum studied by means of Giemsa C-Banding technique. Theor Appl Genet 70: 85–91.Google Scholar
  5. Fernández-Calvin, B., E. Benavente & J. Orellana, 1995. Meiotic pairing in wheat–rye derivatives detected by genomic in situ hybridisation and C-banding- a comparative analysis. Chromosoma 103: 554–558.PubMedGoogle Scholar
  6. Gerlach, W.L. & J.R. Bedbrook, 1979. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucl Acids Res 7: 1869–1885.PubMedGoogle Scholar
  7. Guedes-Pinto, H., V. Carnide & A.F. Silva, 1991. Triticale farm evaluation experiments in northern Portugal. In: Proceedings of the 2nd Symposium, Mexico D.F., CIMMYT, pp. 636–639.Google Scholar
  8. Lima-Brito, J., H. Guedes-Pinto, G.E. Harrison & J.S. Heslop-Harrison, 1996. Chromosome identification and nuclear architecture in Triticale × Tritordeum F1 hybrids. J Exp Botany 47: 583–588.Google Scholar
  9. Martín, A. & E. Sánchez Monge-Laguna, 1982. Cytology and morphology of the amphiploid Hordeum chilense × Triticum turgidum conv. durum. Euphytica 31: 262–267.Google Scholar
  10. Martín, A., J.B. Alvarez, L.M. Martín, E. Barro & J. Ballesteros, 1999. The development of tritordeum: A novel cereal for food processing. J Cereal Sci 30: 85–95.CrossRefGoogle Scholar
  11. Martín, A., L.M. Martín, A. Cabrera, M.C. Ramirez, M.J. Gimenez, D. Rubiales, P. Hernandez & J. Ballesteros, 1998. The potential of Hordeum chilense in breeding Triticeae species. In: A.A. Jaradat (Ed.), Triticeae III, pp. 377–386, Science Publish, U.S.A.Google Scholar
  12. Martín, A., D. Rubiales, J.M. Rubio & A. Cabrera, 1995. Hybrids between Hordeum vulgare and tetra-, hexa- and octoploid tritordeums (amphiploid H. chilense × Triticum spp.). Hereditas 123: 175–182.CrossRefGoogle Scholar
  13. Miller, T.E., S.M. Reader, K.A. Purdie & I.P. King, 1994. Determination of the frequency of wheat–rye chromosome pairing in wheat × rye chromosome pairing in wheat × rye hybrids with and without chromosome 5B. Theor Appl Genet 89: 255–258CrossRefGoogle Scholar
  14. Mukai, Y., Y. Nakahara & M. Yamamoto, 1993. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridisation using total genomic and highly repeated DNA probes. Genome 36: 489–494.Google Scholar
  15. Pohler, W. & O. Schrader, 1990. Nearly total absence of homoeologous pairing in a hybrid between tetraploid Hordeum chilense and Triticum aestivum. Plant Breeding 104: 255–257.Google Scholar
  16. Rayburn, A.L. & B.S. Gill, 1986a. Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Molec Biol Rep 4(2): 102–109.Google Scholar
  17. Rayburn, A.L. & B.S. Gill, 1986b. Molecular identification of the D-genome chromosomes of wheat. J Hered 77: 253–255.Google Scholar
  18. Schwarzacher, T. & J.S. Heslop-Harrison, 2000. Practical in situ Hybridisation, Oxford BIOS, Scientific Publishers Ltd., U.K. 203 p.Google Scholar
  19. Schwarzacher, T., J.S. Heslop-Harrison, K. Anamthawat-Jónsson, R.A. Finch & M.D. Bennett, 1992. Parental genomes separation in reconstructions of somatic and pre-meiotic metaphases of Hordeum vulgare × H. bulbosum. J Cell Sci 101: 13–24.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Ana Carvalho
    • 1
  • Henrique Guedes-Pinto
    • 1
  • Antonío Mártín
    • 2
  • Pat Heslop-Harrison
    • 3
  • José Lima-Brito
    • 1
    Email author
  1. 1.Centre of Genetics and BiotechnologyUniversity of Trás-os-Montes and Alto DouroVila RealPortugal
  2. 2.Instituto de Agricultura Sostenible (CSIC)CórdobaSpain
  3. 3.Department of BiologyUniversity of LeicesterLeicesterU.K.

Personalised recommendations