Euphytica

, Volume 143, Issue 1–2, pp 125–133 | Cite as

Variation of quality traits in cassava roots evaluated in landraces and improved clones

  • A. L. Chávez
  • T. Sánchez
  • G. Jaramillo
  • J. M. Bedoya
  • J. Echeverry
  • E. A. Bolaños
  • H. Ceballos
  • C. A. Iglesias
Article

Abstract

About 70 million people obtain more than 500 cal per day from cassava roots. The crop is fundamental as food security of poor rural communities, but little is known about variability of root nutritional and quality traits. Roots from 2457 genotypes comprising landraces and improved clones, were screened for their nutritional (cyanogenic potential, carotene, minerals, and sugars contents) and agronomic (dry matter content, color intensity, and postharvest physiological deterioration) traits. The objective was to assess the range of variation for the traits evaluated to define future research strategies. Results are mostly based on unreplicated measurements. Carotene contents in the roots ranged from 0.102 to 1.040 mg/100 g fresh tissue and correlated positively with color intensity (ρ = 0.860) and cyanogenic potential (ρ = 0.305). Average levels of Fe and Zn were 17.1 and 7.5 mg/kg, respectively. Many clones derived from Meso-America showed high protein levels in the roots, probably as a result of the introgression from wild relatives only found in that region. The observed values for carotene, proteins and minerals contents suggest the potential for improving the nutritive value of cassava.

Keywords

carotene crude protein minerals postharvest physiological deterioration 

Abbreviations

PPD

postharvest physiological deterioration

HCN

cyanogenic potential

VAD

Vitamin A deficiency

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACC/SCN, 1992. Second report on the world nutrition situation. United Nations, Administrative Committee on Coordination, Subcommittee on nutrition. Geneva. ACC/SCN in collaboration with IFPRI.Google Scholar
  2. ACC/SCN, 2000. Forth report on the world nutrition situation. United Nations, Administrative Committee on Coordination, Subcommittee on nutrition. Geneva. ACC/SCN in collaboration with IFPRI.Google Scholar
  3. Allen, C.A., 1994. The origin of Manihot esculenta Crantz (Euphorbiaceae). Gen Res Crop Evol 41: 133–150.CrossRefGoogle Scholar
  4. Babu, L., & S.R. Chatterjee, 1999. Protein content and amino acid composition of cassava tubers and leaves. J Root Crops 25(20): 163–168.Google Scholar
  5. Beaton, G.H., R. Martorell, K.J. Aronso, B. Edmonston, G. McCabe, A.C. Ross & B. Harvey, 1993. Effectiveness of vitamin A supplementation in the control of young child morbidity and mortality in developing countries. ACC/SCN State of the arts series, Nutrition Policy Paper No. 13. Geneva.Google Scholar
  6. Beeching, J.R., H. Yuanhuai, R. Gómez-Vázquez, R.C. Day & R.M. Cooper, 1998. Wound and defense responses in cassava as related to post-harvest physiological deterioration. In: J.T. Romeo, K.R. Downum & R. Verpoorte (Eds.), Recent Advances in Phytochemistry (vol. 32). Phytochemical Signals in Plant-Microbe Interactions, pp. 231–248. Plenum Press, New York, London.Google Scholar
  7. Brücher, H. 1989. Useful Plants of Neotropical Origin and Their Wild Relatives. Springer-Verlag, Berlin and New York, p. 296.Google Scholar
  8. Buitrago, A.J.A., 1990. La yuca en la alimentación animal. Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia p. 446.Google Scholar
  9. Buschmann, H., M.X. Rodriguez, J. Tohme & J.R. Beeching, 2000. Accumulation of hydroxycoumarins during post-harvest deterioration of tuberous roots of cassava (Manihot esculenta Crantz). Ann Bot 86: 1153–1160.CrossRefGoogle Scholar
  10. CIAT, 1999. Improved Cassava for the Developing World. Annual Report, 1999.Google Scholar
  11. CIAT, 2001. Improved Cassava for the Developing World. Annual Report, 2001.Google Scholar
  12. CIAT, 2002. Improved Cassava for the Developing World. Annual Report, 2002.Google Scholar
  13. Cock, J., 1985. Cassava. New Potential for a Neglected Crop. Westview Press, Boulder, CO., USA.Google Scholar
  14. Combs, G.F., 1998. The Vitamins. Fundamental Aspects in Nutrition and Health. Academic Press. p. 618.Google Scholar
  15. Cronin, D.A. & S. Smith, 1979. A simple and rapid procedure for the analysis of reducing, total and individual sugars in potatoes. Potato Res. 22: 99–105.Google Scholar
  16. El-Sharkawy, M.A., 1993. Drought-tolerant cassava for Africa, Asia and Latin America. BioScience 43: 441–451.Google Scholar
  17. Essers, A.J.A.M., R.M. Bosveld, R.M. van der Gift & A.G.J. Voragen, 1994. A new chromogen for the assay of cyanogens in cassava products. In: M.O. Akoroda (Ed.), Root crops for food security in Africa. Proceedings of the Fifth Triennal Symposium of the International Society for Tropical Root Crops, African Branch (ISTRC-AB), The Technical Centre for Agricultural and Rural Cooperation (CTA) and International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria, pp. 314–317.Google Scholar
  18. FAO/FIDA, 2000. La economía mundial de la yuca. Hechos, tendencias y perspectivas. Fondo Internacional de Desarrollo Agrícola. Organización de las Naciones Unidas para la Agricultura y la Alimentación. Roma, Italia.Google Scholar
  19. García-Casal, M.N., M. Layrisse, L. Solano, M.A. Baron, F. Arguello, D. Llovera, J. Ramirez, I. Leets & E. Tropper, 1998. Vitamin A and beta-carotene can improve nonheme iron absorption from rice, wheat, and corn by humans. J Nutr Bethesda 128(3): 646–650.Google Scholar
  20. Gomez, G., J. Santos & M. Valdivieso, 1983. Utilización de raíces y productos de yuca en alimentación animal. In: C.E. Domínguez (Ed.), Yuca: Investigación, producción y utilización. Working Document No. 50. Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia.Google Scholar
  21. Graham, R.D. & J.M. Rosser, 2000. Carotenoids in staple foods: Their potential to improve human nutrition. Food Nut Bull 21(4): 404–409.Google Scholar
  22. Graham, R.D., D. Senadhira, S. Beebe, C. Iglesias & I. Monasterio, 1999. Breeding for micronutrient density in edible portions of staple food crops: Conventional approaches. Field Crop Res 60: 57–80.CrossRefGoogle Scholar
  23. Hock-Hin, Y. & T. Van-Den, 1996. Protein contents, amino acid compositions and nitrogen-to-protein conversion factors for cassava roots. J Sci Food Agric 70: 51–54.CrossRefGoogle Scholar
  24. Iglesias, C., J. Mayer, A.L. Chávez & F. Calle, 1997. Genetic potential and stability of carotene content in cassava roots. Euphytica 94: 367–373.CrossRefGoogle Scholar
  25. Jalal, F., M.C. Nesheim, Z. Agus, D. Sanjur & J.P. Habitch, 1998. Serum retinol concentrations in children are affected by food sources of beta-carotene, fat intake, and anthelmintic drug treatment. J Clinical Nutr 68(3): 623–629.Google Scholar
  26. Jennings, D.L. & C.H. Hershey, 1985. Cassava breeding: A decade of progress from international programs. In: G.E. Russell (Ed.), Progress in Plant Breeding, pp 89–116. Butterworths. London, Boston.Google Scholar
  27. Kakes, P., 1990. Properties and functions of the cyanogenic sustem in higher plants. Euphytica 48: 25–43.Google Scholar
  28. Kawano, K., W.M. Gonçalvez Fukuda & U. Cenpukdee, 1987. Genetic and environmental effects on dry matter content of cassava root. Crop Sci 27: 69–74.Google Scholar
  29. Kawano, K., K. Narintaraporn, P. Narintaraporn, S. Sarakarn, A. Limsila, J. Limsila, D. Suparhan & W. Watananonta, 1998. Yield improvement in a multistage breeding program for cassava. Crop Sci 38: 325–332.Google Scholar
  30. Kolsteren, P., S.R. Rahman, K. Hilderbrand & A. Diniz, 1999. Treatment for iron deficiency anemia with combined supplementation of iron, vitamin A and zinc in women of Dinajpur, Bangladesh. Euro J Clin Nutr 53(2): 102–106.CrossRefGoogle Scholar
  31. MI/UNICEF/Tulane University, 1998. Progress in controlling vitamin A deficiency. Ottawa: Micronutrients Initiative.Google Scholar
  32. Mwanri, L., A. Worsley, P. Ryan & J. Masika, 2000. Supplemental vitamin A improves anemic school children in Tanzania. J Nut 130: 2691–2696.Google Scholar
  33. Olsen, K.M. & B.A. Schaal, 2001. Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a southern Amanzonian origin of domestication. Am J Bot 88: 131–142.PubMedGoogle Scholar
  34. Renvoize, B.S., 1972. The area of origin of Manihot esculenta as a crop plant –a review of the evidence. Econ Bot 26: 352–360.Google Scholar
  35. Rodriguez Amaya, D., 1989. Critical review of provitamin A determination in plant Foods. J Micronut Anal 5: 191–225.Google Scholar
  36. Rodriguez Amaya, D., 1990. Provitamin A determination problems and possible solutions. Food Nut Bull 12(3): 246–250.Google Scholar
  37. Rodriguez-Amaya, D.B., 2001. A guide to carotenoid analysis in foods. ILSI Press, Washington, pp. 64.Google Scholar
  38. Safo-Katanga, O., P. Aboagye, S.A. Amartey & J.H. Olaham, 1984. Studies on the content of yellow-pigmented cassava. In: E.R. Terry, E.V. Doku, O.B. Arene & N.M. Mahungu (Eds.), Tropical Roots Crops Production and Uses in Africa, pp. 103–104. IDRC, Ottawa, Canada.Google Scholar
  39. Scott, K.J. & D.J. Hart, 1993. Further observations on problems associated with the analysis of carotenoids by HPLC. Food Chem 47: 403–40.CrossRefGoogle Scholar
  40. Scott, G.J., M.K. Rosegrant & C. Ringler, 2000. Global projections for root and tuber crops to the year 2020. Food Policy 25: 561–597.CrossRefGoogle Scholar
  41. Van Oirschot, Q.E.A., G.M. O’Brien, D.D. Dufour, M.A. El-Sharkawy & E. Mesa, 2000. The effect of pre-harvest pruning of cassava upon root deterioration and quality characteristics. J Sci Food Agric 80: 1866–1873.CrossRefGoogle Scholar
  42. West, K.R. Jr., 2001. The magnitude of vitamin A deficiency disorders: Overview. XX IVACG Meeting. Hanoi, Vietnam. February 12–15.Google Scholar
  43. Wheatley, C., C. Lozano & G. Gomez, 1985. Post-harvest deterioration of cassava roots, In: J.H. Cock & J.A. Reyes (Eds.), Cassava: Research, Production and Utilization. pp. 655-671. UNDP-CIAT, Cali.Google Scholar
  44. WHO/UNICEF, 1995. Global prevalence of vitamin A deficiency. Micronutrient Deficiency Information System Working Paper 2. Geneva WHO.Google Scholar
  45. Zapata, G., 2001. Disminución de deterioro fisiológico postcosecha en raíces de yuca (Manihot esculenta Crantz) mediante almacenamiento controlado. B.S. Thesis, Universidad de San Buenaventura, Facultad de Ingeniería Agroindustrial. Cali, Colombia.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • A. L. Chávez
    • 1
  • T. Sánchez
    • 1
  • G. Jaramillo
    • 1
  • J. M. Bedoya
    • 1
  • J. Echeverry
    • 1
  • E. A. Bolaños
    • 1
  • H. Ceballos
    • 1
    • 2
  • C. A. Iglesias
    • 1
    • 3
  1. 1.International Center for Tropical Agriculture (CIAT)Cali, ColombiaU.S.A.
  2. 2.Universidad Nacional de ColombiaPalmira, ColombiaU.S.A.
  3. 3.Weaver Popcorn CompanyNew RichmondUSA

Personalised recommendations