, Volume 145, Issue 3, pp 269–279 | Cite as

QTL mapping of volatile compounds in ripe apples detected by proton transfer reaction-mass spectrometry

  • Elena Zini
  • Franco Biasioli
  • Flavia Gasperi
  • Daniela Mott
  • Eugenio Aprea
  • Tilmann D. Märk
  • Andrea Patocchi
  • Cesare Gessler
  • Matteo KomjancEmail author


The availability of genetic linkage maps enables the detection and analysis of QTLs contributing to quality traits of the genotype. Proton Transfer Reaction Mass Spectrometry (PTR-MS), a relatively novel spectrometric technique, has been applied to measure the headspace composition of the Volatile Organic Compounds (VOCs) emitted by apple fruit genotypes of the progeny ‘Fiesta’ × ‘Discovery’. Fruit samples were characterised by their PTR-MS spectra normalised to total area. QTL analysis for all PTR-MS peaks was carried out and 10 genomic regions associated with the peaks at m/z = 28, 43, 57, 61, 103, 115 and 145 were identified (LOD > 2.5). We show that it is possible to find quantitative trait loci (QTLs) related to PTR-MS characterisation of the headspace composition of single whole apple fruits indicating the presence of a link between molecular characterisation and PTR-MS data. We provide tentative information on the metabolites related to the detected QTLs based on available chemical information. A relation between apple skin colour and peaks related to carbonyl compounds was established.


linkage map Malus on-line headspace analysis PTR-MS QTLs Volatile Organic Compounds 



analysis of variance


base pairs


Interval Mapping


Kruskal Wallis


linkage group


Logarithm of the odds


mass charge ratio


part per billion by volume


Proton Transfer Reaction- Mass Spectrometry


Quantitative Trait Loci


Random Amplified Polymorphism DNA


Simple Sequence Repeats


Volatile Organic Compounds


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Biasioli, F., F. Gasperi, E. Aprea, E. Boscaini & T.D. Märk, 2003a. Fingerprinting Mass Spectroscopy by PTR-MS: A case study. Int J Mass Spectrom 223–224: 343–353.Google Scholar
  2. Biasioli, F., F. Gasperi, E. Aprea, D. Mott, E. Boscaini, D. Mayr & T.D. Märk, 2003b. Coupling Proton Transfer Reaction-Mass Spectrometry with linear discriminant analysis: A case study. J Agric Food Chem 51: 7227–7233.CrossRefGoogle Scholar
  3. Biasioli, F., F. Gasperi, D. Mott, E. Aprea, F. Marini & T.D. Märk, 2004. Characterization of strawberry genotypes by PTR-MS Spectral Fingerprinting: A three years study. Proceedings of the 5th International Strawberry Symposium, 5–10 September 2004, Brisbane, Australia.Google Scholar
  4. Buhr, K., S. van Ruth & C. Delahunty, 2001. Analysis of volatile flavour compounds by Proton Transfer Reaction-Mass Spectrometry: Fragmentation patterns and discrimination between isobaric and isomeric compounds. Int J Mass Spectrom 221: 1–7.Google Scholar
  5. Echeverrìa, G., J. Graell, M.L. Lopez & I. Lara, 2004a. Volatile production, quality and aroma-related enzyme activities during maturation of ‘Fuji’ apples. Postharvest Biol Technol 31: 217–227.Google Scholar
  6. Echeverrìa, G., T. Fuentes, J. Graell, I. Lara & M.L. Lopez, 2004b. Aroma volatile compounds of ‘Fuji’ apples in relation to harvest date and cold storage technology: A comparison of two season. Postharvest Biol Technol 32: 29–44.Google Scholar
  7. Fall, R., T. Karl, A. Hansel, A. Jordan & W. Lindinger, 1999. Volatile organic compounds emitted after leaf wounding: On-line analysis by Proton Transfer Reaction-Mass Spectrometry. J Geophysic Res 104: 15963–15974.Google Scholar
  8. Gasperi, F., G. Gallerani, A. Boscetti, F. Biasioli, A. Monetti, E. Boscaini, A. Jordan, W. Lindinger & S. Iannotta, 2001. The mozzarella cheese flavour profile: A comparison between judge panel analysis and Proton transfer Reaction-Mass Spectroscopy. J Sci Food Agric 81: 357–363.CrossRefGoogle Scholar
  9. Gatehouse, J.A., 2002. Plant resistance towards insect herbivores: A dynamic interaction. New Phytol 1546: 145–149.Google Scholar
  10. Hansel, A., A. Jordan, K. Warneke, R. Holzinger, A. Wisthaler & W. Lindinger, 1999. Proton-trnasfer-reaction mass spectrometry (PTR-MS): On-line monitoring of volatile organic ocmpounds at volume mixing rations of a few pptv. Plasma Sources Sci Technol 8: 332–336.CrossRefGoogle Scholar
  11. Hern, A. & S. Dorn, 2003. Monitoring seasonal variation in apple fruit volatile emissions in situ using solid-phase microextraction. Phytochem Anal 14: 232–240.CrossRefPubMedGoogle Scholar
  12. Karlsen, A.M., K. Aaby, H. Sivertsen, P. Baardseth & M.R. Ellekjaer, 1999. Instrumental and sensory analysis of fresh Norwegian and imported apples. Food Qual Prefer 10: 305–314.CrossRefGoogle Scholar
  13. King, G.J., J.R. Lynn, C.J. Dover, K.M. Evans & G.B. Seymour, 2001. Resolution of quantitative trait loci for mechanical measures accounting for genetic variation in fruit texture of apple (Malus pumilia Mill). Theor Appl Genet 102:1227–1235.Google Scholar
  14. Li, X., M.A. Schuler & M.R. Berenbaum, 2002. Jasmonate and salycilate induce expression of herbivore citochrome P450 genes. Nature 419: 712–715.PubMedGoogle Scholar
  15. Liebhard, R., L. Gianfranceschi, B. Koller, C.D. Ryder, R. Tarchini, E. Van De Weg & C. Gessler, 2002. Development and characterization of 140 new microsatellite in apple (Malus x domestica Borkh). Mol Breeding 10: 217–241.CrossRefGoogle Scholar
  16. Liebhard, R., B. Koller, L. Gianfranceschi & C. Gessler, 2003. Creating a saturated reference map for the apple (Malus × domestica Borkh) genome. Theor Appl Genet 106: 1497–1508.PubMedGoogle Scholar
  17. Lindinger, W., A. Hansel & A. Jordan, 1998a. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int J Mass Spectrom 173: 191–241.CrossRefGoogle Scholar
  18. Lindinger, W., A. Hansel & A. Jordan, 1998b. Proton transfer reaction-mass spectrometry (PTR-MS: On-line monitoring of volatile organic compounds at pptv levels. Chem Soc Rev 27: 347–354.CrossRefGoogle Scholar
  19. Lindinger, W., R. Fall & T. Karl, 2001. Environmental, food and medical applications of Proton Transfer Reaction-Mass Spectrometry (PTR-MS). Advances in Gas Phase Ion Chemistry 4: 1–48.Google Scholar
  20. Manly, K.F. & J.M. Olson, 1999. Overview of QTL mapping software and introduction to Map Manager QT. Mamm Genome 10: 327–334.CrossRefPubMedGoogle Scholar
  21. Mott, D., F. Biasioli, F. Gasperi, E. Aprea, F. Marini & T.D. Märk, 2004. Characterization of strawberry genotypes by PTR-MS spectral fingerprinting. Acta Hort 649: 65–69.Google Scholar
  22. Pawliszyn, J., 1997. Solid Phase Microextraction – Theory and Practice. Wiley VCH, New York.Google Scholar
  23. Rizzoli, A., C. Visai & M. Vanoli, 1997. Changes in some odour-active compounds in paclobutrazol-treated ‘Starkspur Golden’ apples at harvest and after cold storage. Postharvest Bio Technol 11: 39–46.Google Scholar
  24. Seavels, S., J. Lammertyn, A.Z. Berna, E.A. Veraverbeke, C. Di Natale & B. Nicolai, 2004. An electronic nose and mass spectrometry-based technology for assessing apple quality during shelf life. Postharvest Bio Technol 31: 9–19.Google Scholar
  25. Steeghs, M., H. Pal Bais, J. de Gouw, P. Goldan, W. Kuster, M. Northway, R. Fall & J.M. Vivanco, 2004. Proton-Transfer-Reaction Mass Spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol 135: 47–58.CrossRefPubMedGoogle Scholar
  26. Tani, A., S. Hayward & C.N. Hewitt, 2003. Measurements of monoterpenes and related compounds by Proton Transfer Reaction-Mass Spectrometry. Int J Mass Spectrom 223–224: 561–578.Google Scholar
  27. van Ooijen, J.W., 1999. LOD significance thresholds for QTL analysis in experimental populations of diploid species. Heredity 83: 613–624.CrossRefPubMedGoogle Scholar
  28. van Ooijen, J.W., M.P. Boer, J. Jansen & C. Maliepaard, 2002. MapQTL®4.0, Software for the calculation of QTL positions on genetic maps, Plant Research International, Wageningen, The Netherlands.Google Scholar
  29. Van Poecke, R.M., M.A. Posthumus & M. Dicke, 2001. Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecola: Chemical, behavioural and gene-expression analysis. J Chem Ecol 27: 1911–1928.CrossRefPubMedGoogle Scholar
  30. VCF, 2000. Volatile Compounds in Food DATABASE, Boelens Aroma Chemical Information Service (BACIS), The Netherlands, 1996–1999.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Elena Zini
    • 1
  • Franco Biasioli
    • 1
  • Flavia Gasperi
    • 1
  • Daniela Mott
    • 1
  • Eugenio Aprea
    • 1
    • 2
  • Tilmann D. Märk
    • 2
    • 3
  • Andrea Patocchi
    • 4
  • Cesare Gessler
    • 4
    • 5
  • Matteo Komjanc
    • 1
    Email author
  1. 1.Istituto Agrario di S. Michele all'AdigeS. Michele all'AdigeItaly
  2. 2.Institut für IonenphysikUniversität InnsbruckInnsbruckAustria
  3. 3.Department of PlasmaphysicsUniversity of BratislavaBratislavaSlovak Republic
  4. 4.Institute of Plant SciencesSwiss Federal Institute of TechnologyZürichSwitzerland
  5. 5.SafeCrop centerIstituto Agrario di S. Michele all'AdigeS. Michele all'AdigeItaly

Personalised recommendations