Euphytica

, Volume 146, Issue 1–2, pp 101–108 | Cite as

Development and application of functional markers in maize

  • Thomas Lübberstedt
  • Imad Zein
  • Jeppe Reitan Andersen
  • Gerhard Wenzel
  • Birte Krützfeldt
  • Joachim Eder
  • Milena Ouzunova
  • Shi Chun
Article

Summary

Functional markers (FMs) are derived from polymorphic sites within genes causally involved in phenotypic trait variation (Andersen, J.R. & T. Lübberstedt, 2003. Trends Plant Sci 8: 554–560). FM development requires allele sequences of functionally characterized genes from which polymorphic, functional motifs affecting plant phenotype can be identified. In maize and other species with low levels of linkage disequilibrium, association studies have the potential to identify sequence motifs, such as a few nucleotides or insertions/deletions, affecting trait expression. In one of the pioneering studies, nine sequence motifs in the dwarf8 gene of maize were shown to be associated with variation for flowering time (Thornsberry, J.M., M.M. Goodman, J. Doebley, S. Kresovich, D. Nielsen & E.S. Buckler, 2001. Nat Genet 28: 286–289). Proof of sequence motif function can be obtained by comparing isogenic genotypes differing in single sequence motifs. At current, the most appropriate approach for this purpose in crops is targeting induced local lesions in genomes (TILLING) (McCallum, C.M., L. Comai, E.A. Greene & S. Henikoff, 2000. Nat Biotechnol 18: 455–457). In central Europe, maize is mainly grown as forage crop, with forage quality as major trait, which can be determined as proportion of digestible neutral detergent fiber (DNDF). Brown midrib gene knock out mutations have been shown to be beneficial for forage quality but disadvantageous for overall agronomic performance. Two brown midrib genes (bm1 and bm3) have been shown to be involved in monolignol biosynthesis. These two and additional lignin biosynthesis genes have been isolated based on sequence homology. Additional candidate genes putatively affecting forage quality have been identified by expression profiling using, e.g., isogenic bm lines. Furthermore, we identified an association between a polymorphism at the COMT locus and DNDF in a collection of European elite inbred lines.

Key words

functional markers maize forage quality association study brown midrib 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, J.R. & T. Lübberstedt, 2003. Functional markers in plants. Trends Plant Sci 8: 554–560.CrossRefPubMedGoogle Scholar
  2. Andersen, J.R., T. Schrag, A.E. Melchinger, I. Zein & T. Lübberstedt, 2005. Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet 111: 206–217.CrossRefPubMedGoogle Scholar
  3. Barriére, Y. & O. Argillier, 1993. Brown-midrib genes of maize: A review. Agronomie 13: 865–876.Google Scholar
  4. Barriere, Y., C. Guillet, D. Goffner & M. Pichon, 2003. Genetic variation and breeding strategies for improved cell wall digestibility in annual forage crops. A review. Anim Res 52: 193-228.Google Scholar
  5. Bevan, M., K. Mayer, O. White, J.A. Eisen, D. Preuss, T. Bureau, S.L. Salzberg & H.M. Mewes, 2001. Sequence and analysis of the arabidopsis genome. Curr Opin Plant Biol 4: 105–110.CrossRefPubMedGoogle Scholar
  6. Boerjan, W., J. Ralph & M. Baucher, 2003. Lignin biosynthesis. Annu Rev Plant Biol 54: 519–546.CrossRefPubMedGoogle Scholar
  7. Collazo, P., L. Montoliu, P. Puigdomenech & J. Rigau, 1992. Structure and expression of the lignin O-methyltransferase gene from Zea mays L. Plant Mol Biol 20: 857–867.CrossRefPubMedGoogle Scholar
  8. Falush, D., M. Stephens & J.K. Pritchard, 2003. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164: 1567-1587.PubMedGoogle Scholar
  9. Flint-Garcia, M., J.M. Thornsberry & E.S. Buckler, 2003. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54: 357–374.CrossRefPubMedGoogle Scholar
  10. Guillet-Claude, C., C. Birolleua-Touchard, D. Manicacci, P.M. Rogowsky, J. Rigau, A. Murigneux, J.-P. Martinant & Y. Barriere 2004. Nucleotide diversity of the ZmPox3 maize peroxidase gene: Relationships between a MITE insertion in exon 2 and variation in forage maize digestibility. BMC Genet 5:19CrossRefPubMedGoogle Scholar
  11. Lübberstedt, T., A.E. Melchinger, S. Fähr, D. Klein, A. Dally & P. Westhoff, 1998. QTL mapping in testcrosses of flint lines of maize: III. Comparison across populations for forage traits. Crop Sci 38: 1278–1289.Google Scholar
  12. McCallum, C.M., L. Comai, E.A. Greene & S. Henikoff, 2000. Targeted screening for induced mutations. Nat Biotechnol 18: 455–457.PubMedGoogle Scholar
  13. Neuffer, M.G., E.H. Coe & S.R. Wessler, 1997. Mutants of Maize. Cold Spring Harbor Laboratory Press, New York.Google Scholar
  14. Nordborg, M., J.O. Borevitz, J. Bergelson, C.C. Berry, J. Chory, J. Hagenblad, M. Kreitman, J.N. Maloof, T. Noyes, P.J. Oefner, E.A. Stahl & D. Weigel, 2002. The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet 30: 190–193.CrossRefPubMedGoogle Scholar
  15. Pritchard, J.K., M. Stephens, N.A. Rosenberg & P. Donnelly, 2000. Association mapping in structured populations. Am J Hum Genet 67: 170–181.CrossRefPubMedGoogle Scholar
  16. Quackenbush, J., 2002. Microarray data normalization and transformation. Nat Genet 32: 496–501.CrossRefPubMedGoogle Scholar
  17. Risch, N.J., 2000. Searching for genetic determinants in the new millennium. Nature 405: 847–856.CrossRefPubMedGoogle Scholar
  18. Robertson, D.S. 1985. A possible technique for isolating genic DNA for quantitative traits in plants. J Theor Biol 117: 1–10Google Scholar
  19. Saeed, A.I., V. Sharov, J. White, J. Li, W. Liang, N. Bhagabati, J. Braisted, M. Klapa, T. Currier, M. Thiagarajan, A. Sturn, M. Snuffin, A. Rezantsev, D. Popov, A. Ryltsov, E. Kostukovich, I. Borisovsky, Z. Liu, A. Vinsavich, V. Trush & J. Quackenbush, 2003. TM4: A free, open-source system for microarray data management and analysis. Biotechniques 34(2): 374–378.PubMedGoogle Scholar
  20. Saghai-Maroof, M.A., K.M. Soliman, R.A. Jorgensen & R.W. Allard, 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81: 8014-8018.PubMedGoogle Scholar
  21. Schaefer, D.G. & J.P. Zryd, 1997. Efficient gene targeting in the moss Physcomitrella patens. Plant J 11: 1195–1206.CrossRefPubMedGoogle Scholar
  22. Thompson, J.D., D.G. Higgins & T.J. Gibson, 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl Acid Res 22: 4673-4680.Google Scholar
  23. Thornsberry, J.M., M.M. Goodman, J. Doebley, S. Kresovich, D. Nielsen & E.S. Buckler, 2001. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28: 286-289.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Thomas Lübberstedt
    • 1
  • Imad Zein
    • 2
  • Jeppe Reitan Andersen
    • 1
  • Gerhard Wenzel
    • 2
  • Birte Krützfeldt
    • 3
  • Joachim Eder
    • 3
  • Milena Ouzunova
    • 4
  • Shi Chun
    • 2
  1. 1.Department of Plant Biology, Research Centre FlakkebjergDanish Institute of Agricultural SciencesSlagelseDenmark
  2. 2.Chair for Plant Cultivation and Breeding, Department of Plant SciencesTechnical University of MunichFreising-WeihenstephanGermany
  3. 3.Bavarian State InstituteFreising-WeihenstephanGermany
  4. 4.KWS Saat AGEinbeckGermany

Personalised recommendations