, Volume 142, Issue 1–2, pp 33–42 | Cite as

Identification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp. huehuetenangensis) seedlings

  • Yoshiro Mano
  • Masanori Muraki
  • Masahiro Fujimori
  • Tadashi Takamizo
  • Bryan Kindiger


Adventitious root formation (ARF) at the soil surface is one of the most important adaptations to soil flooding or waterlogging. Quantitative trait loci (QTL) controlling ARF under flooding condition were identified in a 94 F2 individual population by crossing maize (Zea mays L., B64) × teosinte (Z. mays ssp. huehuetenangensis). A base-map was constructed using 66 SSR and 42 AFLP markers, covering 1,378 cM throughout all ten maize chromosomes. The ARF capacity for seedlings was determined by evaluating the degree of root formation at the soil surface following flooding for 2 weeks. ARF showed continuous variation in the F2 population. Interval mapping and composite interval mapping analyses revealed that the QTL for ARF was located on chromosome 8 (bin 8.05). Utilising a selective genotyping strategy with an additional 186 F2 population derived from the same cross combination and 32 AFLP primer combinations, regions on chromosomes 4 (bin 4.07) and 8 (bin 8.03) were found to be associated with ARF. Z. mays ssp. huehuetenangensis contributed all of the QTL detected in this study. Results of the study suggest a potential for transferring waterlogging tolerance to maize from Z. mays ssp. huehuetenangensis.


adventitious root flooding quantitative trait loci teosinte waterlogging Zea mays 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arikado, H. & Y. Adachi, 1955. Anatomical and ecological responses of barley and some forage crops to the flooding treatment. Bull Fac Agric Mie Univ 11: 1–29.Google Scholar
  2. Basten, C.J., B.S. Weir & Z.B. Zeng, 2000. QTL Cartographer, Version 1.14. Department of Statistics, North Carolina State University, Raleigh, NC, U.S.A.Google Scholar
  3. Bird, R.McK., 2000. A remarkable new teosinte from Nicaragua: Growth and treatment of progeny. Maize Gen Coop Newsl 74: 58–59.Google Scholar
  4. Burdick, D.M., 1989. Root aerenchyma development in spartina patens in response to flooding. Amer J Bot 76: 777–780.Google Scholar
  5. Churchill, G.A. & R.W. Doerge, 1994. Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971.PubMedGoogle Scholar
  6. Cohen, J.I. & W.C. Galinat, 1984. Potential use of alien germplasm for maize improvement. Crop Sci 24: 1011–1015.CrossRefGoogle Scholar
  7. Darvasi, A. & M. Soller, 1992. Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus. Theor Appl Genet 85: 353–359.CrossRefGoogle Scholar
  8. Das, D.K. & R.L. Jat, 1977. Influence of three soil-water regimes on root porosity and growth of four rice varieties. Agron J 69: 197–200.CrossRefGoogle Scholar
  9. Harlan, J.R., 1976. Genetic resources in wild relatives of crops. Crop Sci 16:329–333.CrossRefGoogle Scholar
  10. Iltis, H.H. & B.F. Benz, 2000. Zea nicaraguensis (Poaceae), a new teosinte from Pacific coastal Nicaragua. Novon 10: 382–390.Google Scholar
  11. Iltis, H.H. & J.F. Doebley, 1980. Taxonomy of Zea (Gramineae). II Subspecific categories in the Zea mays complex and a generic synopsis. Amer J Bot 67: 994–1004.Google Scholar
  12. Jackson, M.B. & D.J. Campbell, 1976. The role of adventitious roots in recovery of shoots following flooding of the original root system. Amer J Bot 42: 816–819.Google Scholar
  13. Jat, R.L., M.S. Dravid, D.K. Das & N.N. Goswami, 1975. Effect of flooding and high soil water condition on root porosity and growth of maize. J. Indian Soc. Soil Sci 23: 291–297.Google Scholar
  14. Kramer, P.J., 1951. Causes of injury to plants resulting from flooding of the soil. Plant Physiol 26: 722–736.CrossRefPubMedGoogle Scholar
  15. Krizek, D.T., 1982. Plant response to atmospheric stress caused by waterlogging. In: M.N. Christiansen & C.F. Lewis (Eds.) Breeding Plants for Less Favorable Environment. pp. 293–334, Wiley, New York.Google Scholar
  16. Lander, E.S., P. Green, J. Abrahamson, A. Barlow, M.J. Daly, S.E. Lincoln & L. Newburg, 1987. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.CrossRefPubMedGoogle Scholar
  17. Lander, E.S. & D. Botstein, 1989. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.PubMedGoogle Scholar
  18. Lizaso, J.I., L.M. Melendez & R. Ramirez, 2001. Early flooding of two cultivars of tropical maize. I. shoot and root growth. J Plant Nutr 24: 979–995.CrossRefGoogle Scholar
  19. Mano, Y., M. Muraki, M. Fujimori, T. Takamizo & H. Sato, 2004. Construction of an SSR-AFLP based F2 map of maize (Zea mays L.) × teosinte (Z. mays ssp. huehuetenangensis) cross and comparison of the map to maize (Zea mays L.) linkage map (in Japanese). Breed Res 6 (Suppl 1) 110.Google Scholar
  20. Mano, Y., M. Muraki, M. Fujimori & T. Takamizo, 2005. Varietal difference and genetic analysis of adventitious root formation at the soil surface during flooding in maize and teosinte seedlings. Jpn J Crop Sci 74: 41–46 (in Japanese).Google Scholar
  21. McDonald, M.P., N.W. Galwey & T.D. Colmer, 2001. Waterlogging tolerance in the tribe Triticeae: The adventitious roots of Critesion marinum have a relatively high porosity and a barrier to radial oxygen loss. Plant Cell Environ 24: 585–596.CrossRefGoogle Scholar
  22. Mellersch, C. & J. Sampson, 1993. Simplifying detection of microsatellite length polymorphisms. Bio Techniques 15: 582–584.Google Scholar
  23. Qi, X. & P. Lindhout, 1997. Development of AFLP markers in barley. Mol Gen Genet 254: 330–336.CrossRefPubMedGoogle Scholar
  24. Ray, J.D., B. Kindiger & T.R. Sinclair, 1999. Introgressing root aerenchyma into maize. Maydica 44: 113–117.Google Scholar
  25. Reeves, R.G., 1950. The use of teosinte in the improvement of corn inbreds. Agron J 42: 248–251.CrossRefGoogle Scholar
  26. Sachs, M., C. Sabbaiah & I. Saab, 1996. Anaerobic gene expression and flooding tolerance in maize. J Exp Bot 47: 1–15.Google Scholar
  27. Schiemann, A., V. Dauck, W. Friedt, S. Streng, A. Graner & F. Ordon, 1999. Establishment of a fluorescence-based AFLP technique and rapid marker detection for the resistance locus rym5. Barley Genetic Newsl 29: 5–7.Google Scholar
  28. Sharopova, N., M.D. McMullen, L. Schultz, S. Schroeder, H. Sanchez-Villeda, J. Gardiner, D. Bergstrom, K. Houchins, S. Melia-Hancock, T. Musket, N. Duru, M. Polacco, K. Edwards, T. Ruff, J.C. Register, C. Brouwer, R. Thompson, R. Velasco, E. Chin, M. Lee, W. Woodman-Clikeman, M.J. Long, E. Liscum, K. Cone, G. Davis & E.H. Coe, 2002. Development and mapping of SSR markers for maize. Plant Mol Biol 48: 463–481.CrossRefPubMedGoogle Scholar
  29. Subbaiah, C.C. & M.M. Sachs, 2003. Molecular and cellular adaptations of maize to flooding stress. Ann Bot 91:119–127.CrossRefPubMedGoogle Scholar
  30. Tase, K. & M. Kobayasi, 1992. Studies on flooding tolerance in Italian ryegrass 2. Simple screening technique for flooding tolerance in Italian ryegrass. Hokuriku Sakumotsu Gakkaiho 27: 76–78 (in Japanese).Google Scholar
  31. Tuberosa, R., M.C. Sanguineti, P. Landi, M.M. Giuliani, S. Salvi & S. Conti, 2002. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol 48: 697–712.CrossRefPubMedGoogle Scholar
  32. Tuberosa, R., S. Salvi, M.C. Sanguineti, M. Maccaferri, S. Giuliani & P. Landi, 2003. Searching for quantitative trait loci controlling root traits in maize: A critical appraisal. Plant and Soil 255: 35–54.CrossRefGoogle Scholar
  33. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407–4414.PubMedGoogle Scholar
  34. Wample, R.L. & D.M. Reid, 1978. Control of adventitious root production and hypocotyl hypertrophy of sunflower (Helianthus annuus) in response to flooding. Physiol Plant 44: 351–358.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Yoshiro Mano
    • 1
  • Masanori Muraki
    • 2
  • Masahiro Fujimori
    • 1
  • Tadashi Takamizo
    • 1
  • Bryan Kindiger
    • 3
  1. 1.National Institute of Livestock and Grassland ScienceJapan
  2. 2.National Agricultural Research Center for Kyushu Okinawa RegionYokoichi, MiyazakiJapan
  3. 3.USDA ARS Grazinglands Research LaboratoryEl RenoU.S.A.

Personalised recommendations