Euphytica

, Volume 140, Issue 1–2, pp 95–106 | Cite as

The sexual differentiation of Cannabis sativa L.: A morphological and molecular study

  • V. M. Cristiana Moliterni
  • Luigi Cattivelli
  • P. Ranalli
  • Giuseppe Mandolino
Article

Summary

Cannabis sativa L. is a dioecious species with sexual dimorphism occurring in a late stage of plant development. Sex is determined by heteromorphic chromosomes (X and Y): male is the heterogametic sex (XY) and female is the homogametic one (XX). The sexual phenotype of Cannabis often shows some flexibility leading to the differentiation of hermaphrodite flowers or bisexual inflorescences (monoecious phenotype). Sex is considered an important trait for hemp genetic improvement; therefore, the study of the mechanism of sexual differentiation is of paramount interest in hemp research. A morphological and molecular study of Cannabis sativa sexual differentiation has been carried out in the Italian dioecious cultivar Fibranova.

Microscopic analysis of male and female apices revealed that their reproductive commitment may occur as soon as the leaves of the fourth node emerge; the genetic expression of male and female apices at this stage has been compared by cDNA-AFLP. A rapid method for the early sex discrimination has been developed, based on the PCR amplification of a male-specific SCAR marker directly from a tissue fragment.

Five of the several cDNA-AFLP polymorphic fragments identified have been confirmed to be differentially expressed in male and female apices at the fourth node. Cloning and sequencing revealed that they belong to nine different mRNAs that were all induced in the female apices at this stage. Four out of them showed a high degree of similarity with known sequences: a putative permease, a SMT3-like protein, a putative kinesin and a RAC-GTP binding protein.

Key words

Cannabis sativa cDNA-AFLP dioecy sex linked markers sexual differentiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, S.F., W. Gish, W. Miller, E.W. Myers & D.J. Lipman, 1990. Basic local alignment search tool. J Mol Biol 215: 403–410.CrossRefPubMedGoogle Scholar
  2. Bachem, C.W.B., R.S. van der Hoeven, S.M. de Bruijn, D. Vreugdenhil, M. Zabeau & R.G.F. Visser, 1996. Visualization of differential gene expression using a novel method of RNA finger-printing based on AFLP: Analysis of gene expression during potato tuber development. Plant J 9: 745–753.CrossRefPubMedGoogle Scholar
  3. Bachem, C.W.B., R.J.F.J. Oomen & R.G.F. Visser, 1998. Transcript imaging with cDNA-AFLP: A step-by-step protocol. Plant Mol Biol Rep 16: 157–173.CrossRefGoogle Scholar
  4. Baskin, T.I., 2000. The cytoskeleton. In: B. Buchanan, W. Gruissem & R. Jones, (Eds.), Biochemisty and Molecular Biology of Plants, pp. 219–221. American Society of Plant Physiologists, Rockville, Maryland.Google Scholar
  5. Boecke, J.D., 1989. Transposable elements in Saccharomyces cerevisiae. In: D.E. Berg & M.M. Howe (Ed.), Mobile DNA, pp. 335–374. American Society of Microbiology, Washington DC.Google Scholar
  6. Bredemann, G., 1938. Züchtung des Hanfes auf Fasergehaltes. Die Ergebnisse des Jahres 1937. Faserforschung 4: 239–258.Google Scholar
  7. Charlesworth, D. & D.S. Guttman, 1999. The evolution of dioecy and plant sex chromosome systems. In: C.C. Ainsworth (Ed.), Sex Determination in Flowering Plants, pp. 25–33. Bios Scientific Publishers, Oxford, Washington DC.Google Scholar
  8. Corpet, F., 1988. Multiple sequence alignment with hierarchical clustering. Nucl Acids Res 16(22): 10881–10890.PubMedGoogle Scholar
  9. Donnison, I.S. & S.G. Grant, 1999. Male sex-specific DNA in Silene latifolia and other dioecious plant species. In: C.C. Ainsworth (Ed.), Sex Determination in Flowering Plants, pp. 73–88. Bios Scientific Publishers, Oxford–Washington DC.Google Scholar
  10. Faeti, V., G. Mandolino & P. Ranalli, 1996. Genetic diversity of Cannabis sativa germplasm based on RAPD markers. Plant Breeding 115: 367–370.Google Scholar
  11. Forapani, S., A. Carboni, C. Paoletti, V.M.C. Moliterni, P. Ranalli & G. Mandolino, 2001. Comparison of hemp varieties using random amplified polymorphic DNA markers. Crop Sci 41: 1682–1688.CrossRefGoogle Scholar
  12. Galoch, E., 1980. The hormonal control of sex differentiation in dioecious plants of hemp (Cannabis sativa). Acta Physiol Plant vol II (n.1): 31–39.Google Scholar
  13. Grant, S., A. Houben, B. Vyskot, J. Siroky, W.H. Pan, J. Macas & H. Saedler, 1994. Genetics of sex determination in flowering plants. Dev Genet 15: 214–230.Google Scholar
  14. Harley, C.B., 1997. Hybridization of Oligo(dT) to RNA on nitrocellulose. Gene Anal Tech 4: 17–22.Google Scholar
  15. Hartings, H., 1999. High resolution fingerprinting of transcribed genes by means of a modified cDNA-AFLP method. Maydica 44: 179–186.Google Scholar
  16. Klimyuk, V.I., B.J. Carrolm, C.M. Thomas & J.D. Jones, 1993. Alkali treatment for rapid preparation of plant material for reliable PCR analysis. Plant J 3: 493–494.PubMedGoogle Scholar
  17. Lacombe, J.-P., 1980. Discrimination des sexes en fonction de caractères végétatifs précoces chez le Chanvre dioïque (Cannabis sativa L.). Physiol Vég 18: 419–430.Google Scholar
  18. Mandolino, G., A. Carboni, S. Forapani & P. Ranalli, 1998. DNA markers associated with sex phenotype in hemp (Cannabis sativa L.). In: Proc Bast Fibrous Plants Today and Tomorrow, St Petersburg, September 28–30, pp. 197–201.Google Scholar
  19. Mandolino, G., A. Carboni, S. Forapani, V. Faeti & P. Ranalli, 1999. Identification of DNA markers linked to the male sex in dioecious hemp (Cannabis sativa L.). Theor Appl Genet 98: 86–92.Google Scholar
  20. Mandolino, G., A. Carboni, M. Bagatta, V.M.C. Moliterni & P. Ranalli, 2002. Occurrence and frequency of putatively Y chromosome linked DNA markers in Cannabis sativa L. Euphytica 126: 211–216.Google Scholar
  21. Mandolino, G. & P. Ranalli, 2002. The applications of molecular markers in genetics and breeding of hemp. J Ind Hemp 7: 7–24.Google Scholar
  22. Mediavilla, V., M. Jonquera, I. Schmid-Slembrouck & A. Soldati, 1998. A decimal code for growth stages of hemp (Cannabis sativa L.). J Ind Hemp Ass 5: 65–74.Google Scholar
  23. Mohan Ram, H.Y. & R. Nath, 1964. The morphology and embryology of Cannabis sativa L. Phytomorphology 14: 414–429.Google Scholar
  24. Mohan Ram, H.Y. & R. Sett, 1982a. Modification of growth and sex expression in Cannabis sativa by aminoethoxyvinylglycine and etephon. Z Planzenphysiol Bd 105: 165–172.Google Scholar
  25. Mohan Ram, H.Y. & R. Sett, 1982b. Induction of fertile male flowers in genetically female Cannabis sativa plants by silver nitrate and silver thiosulphate anionic complex. Theor Appl Genet 62: 369–375.Google Scholar
  26. Peil, A., H. Flachowsky, E. Schumann & W.E. Weber, 2003. Sex-linked AFLP markers indicate a pseudoautosomal region in hemp (Cannabis sativa L.). Theor Appl Genet 107: 102–109.PubMedGoogle Scholar
  27. Sakamoto, K., Y. Akiyama, K. Fukui, H. Kamada & S. Satoh, 1998. Characterization, genome size and morphology of sex chromosomes in hemp (Cannabis sativa L.). Cytologia 63: 459– 464.Google Scholar
  28. Sakamoto, K., N. Ohmido, K. Fukui, H. Kamada & S. Satoh, 2000. Site-specific accumulation of a LINE-like retrotrasposon in a sex chromosome of the dioecious plant Cannabis sativa. Plant Mol Biol 44: 723–732.PubMedGoogle Scholar
  29. Sambrook, J., E.F. Fritisch & T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press.Google Scholar
  30. Scutt, C.P., S.E. Robertson, M.E. Willis, K. Kamisugi, Y. Li, M.R. Shenton, R.H. Smith, H. Martin & P.M. Gilmartin, 1999. Molecular approaches to the study of sex determination in dioecious Silene latifolia. In: C.C. Ainsworth (Ed.), Sex Determination in Flowering Plants, pp. 51–72. Bios Scientific Publishers, Oxford, Washington DC.Google Scholar
  31. Valster, A.H., P.K. Hepler & J. Chernoff, 2000. Plant GTP-ases: The Rhos in bloom. Trends Cell Biol 10: 141–146.CrossRefPubMedGoogle Scholar
  32. Tao, L., A.Y. Cheung & H. Wu, 2002. Plant Rac-Like GTPases are activated by auxin and mediate auxin-responsive gene expression. Plant Cell 14: 2745–2760.PubMedGoogle Scholar
  33. The Angiosperm Phylogeny Group, 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APGII. Bot J Linn Soc 141: 399–436.Google Scholar
  34. Westgaard, M., 1958. The mechanism of sex determination in dioecious plants. Adv Genet 9: 217–281.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • V. M. Cristiana Moliterni
    • 1
  • Luigi Cattivelli
    • 2
  • P. Ranalli
    • 1
  • Giuseppe Mandolino
    • 1
  1. 1.Istituto Sperimentale per le Colture IndustrialiBolognaItaly
  2. 2.Istituto Sperimentale per la CerealicolturaFiorenzuola d’ArdaItaly

Personalised recommendations