Euphytica

, Volume 140, Issue 1–2, pp 55–64

Histochemical and supramolecular studies in determining quality of hemp fibres for textile applications

  • Piera Medeghini Bonatti
  • Chiara Ferrari
  • Bonaventura Focher
  • Carmen Grippo
  • Giangiacomo Torri
  • Cesare Cosentino
Article

Summary

The composition and supramolecular structure of hemp primary bast fibres have been assessed using microscopy, compositional analysis, wide-angle X-ray diffractometry and CP-MAS 13C-NMR, in order to unambiguously define some quality parameters. The main components of the fibre wall were detected by histochemical reactions and modifications occurring during the plant growth have been pointed out. Some differences in fibre lignification degree were recorded among cultivars and confirmed by means of compositional and structural analysis. As for flax and kenaf, X-ray patterns revealed semicrystalline structure of hemp cellulose. NMR spectra and their probabilistic elaboration by MaxEnt method gave further insight on the presence of paracrystalline and amorphous phases and provided an accurate evaluation of polymeric components.

Key words

cellulose CP-MAS 13C NMR hemp (Cannabis sativa L.) histochemistry textile fibres X-ray diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, I.E., 1969. X ray diffraction methods in polymer science, pp.137–197, Wiley Interscience, New York.Google Scholar
  2. Atalla, R.H., 1997. The Structures of Cellulose, American Chemical Society, Washington.Google Scholar
  3. Atalla, R.H. & D.L. VanderHart, 1984. Native cellulose: A composite of two distinct crystalline forms. Science 223: 283–285.PubMedGoogle Scholar
  4. Czaninsky, Y., B. Monties, D. Reis & A.M. Catesson, 1987. Contribution of progressive delignification experiments to the study of lignified cell walls. IAWA Bull 8: 310.Google Scholar
  5. Delsuc, M.A., 1989. A new maximum entropy processing algorithm, with applications to nuclear magnetic resonance experiments. In: J. Skilling (Eds.), Maximum Entropy and Bayesian Methods, Kluwer Academic, Amsterdam.Google Scholar
  6. Focher, B., M.T. Palma, M. Canetti, G. Torri, C. Cosentino & G. Gastaldi, 2001. Structural differences between non-wood plant celluloses: evidence from solid state NMR, vibrational spectroscopy and X-ray diffractometry. Ind Crops Products 13: 193–208.Google Scholar
  7. Gahan, P.B., 1984. Plant Histochemistry and Cytochemistry, Academic Press, London.Google Scholar
  8. Gorshkova, T.A., S.E. Wyatt, V.V. Salnikov, D.M. Gibeaut, M.R. Ibragimof, V.V. Lozovaya & N.C. Carpita, 1996. Cell-wall polysaccharides of developing flax plants. Plant Physiol 110: 721–729.PubMedGoogle Scholar
  9. Guiasu, S. & A. Shenitzer, 1985. The principle of maximum entropy. The Mathematical Intelligencer 7: 43–48.CrossRefGoogle Scholar
  10. His, I., C. Andème-Onzighi, C. Morvan & A. Driouch, 2001. Microscopic studies on mature flax fibers embedded in LR-White: immunogold localization of cell wall matrix polysaccharides. J Histochem Cytochem 49: 1525–1535PubMedGoogle Scholar
  11. Jarvis, M.C. & M.C. McCann, 2000. Macromolecular biophysics of the plant cell wall: Concepts and methodology. Plant Physiol Biochem 38: 1–13.Google Scholar
  12. Jensen, W.A., 1962. Botanical Histochemistry: Principles and practices. W.H. Freeman, London.Google Scholar
  13. Johansen, D.A., 1958. Plant microtechnique, McGraw-Hill, New York.Google Scholar
  14. Klug, H.P. & I.E. Alexander, 1954. X-ray Procedures, pp. 491–538, Wiley Interscience, New York.Google Scholar
  15. Larsson, P.T., K. Wickholm & T. Iversen, 1997. A CP/MAS 13C NMR investigation of molecular ordering in celluloses. Carbohydr Res 302: 19–25.Google Scholar
  16. Lennholm, H., T. Larsson & T. Iversen, 1994. Determination of cellulose Iα and Iβ in lignocellulosic materials. Carbohydr Res 261: 119–131.Google Scholar
  17. Morton, W.E. & J.W.S. Hearle, 1975. Physical Properties of Textile Fibres, The Textile Institute, Heinemann, London.Google Scholar
  18. O’Brien, T.H., N. Feder & M.E. McCully, 1964. Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59: 367–373.Google Scholar
  19. Renard, C. & M.C. Jarvis, 1999. A cross-polarization, magic-angle-spinning, 13C-nuclear-magnetic-resonance study of polysaccharides in sugar beet cell walls. Plant Physiol 119: 1315– 1322.CrossRefPubMedGoogle Scholar
  20. Rowell, R.M., J.S. Han & J.S. Rowell, 2000. Characterization and factors effecting fiber properties. In: E. Frollini, A.L. Leao L.H.C. Mattoso (Eds.), Natural polymers and agrofibers based composites: preparation, properties and applications, Embrapa Instrumentação Agropecuària, São Carlos, Brazil.Google Scholar
  21. Sugyiama, J., J. Persson & H. Chanzy, 1991a. Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24: 2461–2466.Google Scholar
  22. Sugyiama, J., R. Vuong & H. Chanzy, 1991b. Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24: 4168– 4175.Google Scholar
  23. Torri, G., P. Sozzani & B. Focher, 1993. Morphology and structure of cellulose materials as studied by MAS NMR spectroscopy. In: F. Morazzoni (Ed.), Molecular materials to solids applications of nuclear magnetic resonance spectroscopies, pp.71–83, Polo Editoriale Chimico, Milano.Google Scholar
  24. Vallet, C., B. Chabbert, Y. Czaninsky & B. Monties, 1996. Histochemistry of lignin deposition during sclerenchyma differentiation in alfalfa stems. Ann Bot 78: 625–632.Google Scholar
  25. VanderHart, D.L. & R.H. Atalla, 1984. Studies of microstructure in native celluloses using solid state 13C NMR. Macromolecules 17: 1465–1472.Google Scholar
  26. Wada, M., J. Sugiyama & T. Okano, 1993. Native celluloses on the basis of two crystalline phase (Iα Iβ) system. J Appl Polym Sci 49: 1491–1496.Google Scholar
  27. Yamamoto, H. & F. Horii, 1993. CP/MAS 13C NMR analysis of the crystal transformation induced for Valonia cellulose by annealing at high temperatures. Macromolecules 26: 1313–1317.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Piera Medeghini Bonatti
    • 1
  • Chiara Ferrari
    • 1
  • Bonaventura Focher
    • 2
  • Carmen Grippo
    • 2
  • Giangiacomo Torri
    • 3
  • Cesare Cosentino
    • 3
  1. 1.Department of Agricultural SciencesUniversity of Modena and Reggio EmiliaReggio EmiliaItaly
  2. 2.Department of Material and Environmental EngineeringUniversity of Modena and Reggio EmiliaModenaItaly
  3. 3.Institute of Chemistry and Biochemistry “G. Ronzoni,”MilanoItaly

Personalised recommendations