Advertisement

Euphytica

, Volume 139, Issue 3, pp 217–225 | Cite as

Mapping genes for grain protein concentration and grain yield on chromosome 5B of Triticum turgidum (L.) var. dicoccoides

  • J.L. Gonzalez-HernandezEmail author
  • E.M. Elias
  • S.F. Kianian
Article

Abstract

Grain protein concentration (GPC) is an important quality factor in durum wheat [Triticum turgidum (L.) var. durum]. Due to the strong environmental influence on GPC, molecular markers linked to quantitative trait loci (QTL) affecting GPC have the potential to be valuable in wheat breeding programs. Various quantitative traits in a population of 133 recombinant inbred chromosome lines were studied in replicated trials at three locations in North Dakota. Segregation for GPC, 1000-kernel weight, gluten strength, heading date, and plant height was observed. By relating phenotypic data to a linkage map obtained from the same population, three QTL affecting GPC, and one affecting yield were identified. The genotypic coefficients of determination for both traits were high.

Key words

dicoccoides protein content QTL mapping wheat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Autran, J.C., J. Abecassis & P. Feillet, 1986. Statistical evaluation of different technological and biochemical tests for quality assessment in durum wheats. Cereal Chem 390: 63–394.Google Scholar
  2. Avivi, L., 1978. High grain protein content in wild tetraploid wheat Triticum dicoccoides Korn. In: S. Ramanujam (Ed.), Proceedings of the International Wheat Genetic Symposium, New Delhi, India, 23–28 February 1987, Indian Society of Genetics and Plant Breeding, Indian Agriculture Research Institute, New Delhi, India, pp. 372–380.Google Scholar
  3. Cantrell, R.G. & L.R. Joppa, 1991. Genetic analysis of quantitative traits in wild emmer (Triticum turgidum L. var. dicoccoides). Crop Sci 31: 645–649.CrossRefGoogle Scholar
  4. Chee, P.W., E.M. Elias, J.A. Anderson & S.F. Kianian, 2001. Evaluation of a high grain protein QTL from Triticum turgidum L. var. dicoccoides in an adapted durum wheat background. Crop Sci 41: 295–301.CrossRefGoogle Scholar
  5. Cochran, W.G. & G.M. Cox, 1957. Experimental Designs. Wiley, New York.Google Scholar
  6. D’Egidio, M.G., B.M. Mariani & S. Nardi, 1990. Chemical and technological variables and their relationships: A predictive equation for pasta cooking quality. Cereal Chem 67: 275–281.Google Scholar
  7. Dick, J.W. & J.S. Quick, 1983. A modified screening test for rapid estimation of gluten strength in early-generation durum wheat breeding lines. Cereal Chem 60: 315–318.Google Scholar
  8. Elias, E.M. & J.D. Miller, 2000. Registration of ‘Maier’ durum wheat. Crop Sci 40: 1498–1499.Google Scholar
  9. Elias, E.M., D.K. Steiger & R.G. Cantrell, 1996. Evaluation of lines derived from wild emmer chromosome substitutions. II. Agronomic traits. Crop Sci 36: 228–233.Google Scholar
  10. Faris, J.D., J.A. Anderson, L.J. Francl & J.G. Jordahl, 1997. RFLP mapping of resistance to chlorosis induction by Pyrenophora tritici-repentis in wheat. Theor Appl Genet 94: 98–103.CrossRefPubMedGoogle Scholar
  11. Faris, J.D., K.M. Haen & B.S. Gill, 2000. Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154: 823–835.PubMedGoogle Scholar
  12. Feillet, P. & J.E. Dexter, 1996. Quality requirements of durum wheat for semolina milling and pasta production. In: J.E. Kruger, R.B. Matsuo & J.W. Dick (Ed.). Pasta and Noddle Technology, pp. 95–131. AACC, St. Paul, MN, USA.Google Scholar
  13. Gomez, K.A. & A.A. Gomez, 1984. Statistical Procedures for Agricultural Research. Wiley, New York.Google Scholar
  14. Jolly, C.J., G.M. Glenn & S. Rahman, 1996. GSP-1 genes are linked to the grain hardness locus (Ha) on wheat chromosome 5D. Proc Natl Acad Sci USA 93: 2408–2413.PubMedGoogle Scholar
  15. Joppa, L.R., 1993. Chromosome engineering in tetraploid wheat. Crop Sci 33: 908–913.CrossRefGoogle Scholar
  16. Joppa, L.R. & R.G. Cantrell, 1990. Chromosomal location of genes for grain protein content of wild tetraploid wheat. Crop Sci 30: 1059–1064.CrossRefGoogle Scholar
  17. Joppa, L.R., C. Du, G.E. Hart & G.H. Hareland, 1997. Mapping gene(s) for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbreed chromosome lines. Crop Sci 37: 1586–1589.CrossRefGoogle Scholar
  18. Liu, C. & M.D. Gale, 1989. Ibf-1 (iodine binding factor), a high variable marker system in the Triticeae. Theor Appl Genet 77: 233–240.Google Scholar
  19. Mather, D.E., N.A. Tinker, D.E. Laberge, M. Edney, B.L. Jones, B.G. Rossnagel, W.G. Legge, K.G. Briggs, R.B. Irvine, D.E. Falk & K.J. Kasha, 1997. Regions of the genome that affect grain and malt quality in a North American two-row barley cross. Crop Sci 37: 544–554.CrossRefGoogle Scholar
  20. Matsuo, R.R., J.W. Bradley & G.N. Irvine, 1972. Effect of protein content on the cooking quality of spaghetti. Cereal Chem 49: 707–711.Google Scholar
  21. Matsuo, R.R., J.E. Dexter, F.G. Kosmolak & D. Leslie, 1982. Statistical evalution of tests for assessing spaghetti-making quality of durum wheat. Cereal Chem 59: 222–228.Google Scholar
  22. Nelson, J.C., M.E. Sorrells, A.E. Van Deyne, Y.H. Lu, L.M. Atkison, M. Bernard, P. Leroy, J.D. Faris & J.A. Anderson, 1995. Molecular mapping of wheat: Major genes and rearrangements in homoeologous groups 4, 5 and 7. Genetics 141: 721–731.PubMedGoogle Scholar
  23. Paterson, A.H., J.W. DeVerna, B. Lanini & S.D. Tanksley, 1990. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124: 735–742.PubMedGoogle Scholar
  24. Pillen, K., A. Zazharias & J. Leon, 2003. Advanced backcross QTL analysis in barley (Hordeum vulgare). Theor Appl Genet 107: 340–352.CrossRefPubMedGoogle Scholar
  25. Röder, M.S., V. Korzun, K. Wendehake, J. Plaschke, M.-H. Tixier, P. Leroy & M.W. Ganal, 1998. A microsatellite map of wheat. Genetics 149: 2007–2023.PubMedGoogle Scholar
  26. SAS Institute Inc., 1995. SAS/STA User’s Guide, 5th edn., Vol. 1. SAS Institute, Cary, NC.Google Scholar
  27. Schon, C.C., A.E. Melchinger, J. Boppenmaier, E. Brunklaus-Jung, R.G. Herrmann & J.F. Seitzer, 1994. RFLP mapping in maize: Quantitative trait loci affecting testcross performance of elite European flint lines. Crop Sci 34: 378–389.CrossRefGoogle Scholar
  28. Sourdille, P., M.R. Perretant, G. Charmet, P. Leroy, M.F. Gautier, P. Joudrier, J.C. Nelson, M.E. Sorrells & M. Bernard, 1996. Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theor Appl Genet 93: 580–586.CrossRefGoogle Scholar
  29. Steel, R.G.D. & J.H. Torrie, 1980. Principles and Procedures of Statistics. A Biometrical Approach. McGraw-Hill, New York.Google Scholar
  30. Steiger, D.K., E.M. Elias & R.G. Cantrell, 1996. Evaluation of lines derived from wild emmer chromosome substitutions. I. Quality traits. Crop Sci 36: 223–227.Google Scholar
  31. Tinker, N.A. & D.A. Mather, 1995. Methods for QTL analysis with progeny replicated in multiple environments [online: http://www.ncgr.org/ag/jag/papers95/paper195/jqtl15.html. (verified 2/26/2001).Google Scholar
  32. Wasik, R.J.A.W.B. 1975. Relation between molecular-weight distribution of endosperm proteins and spaghetti-making quality of wheats. Cereal Chem 52: 322–328.Google Scholar
  33. Werner-Fraczek, J.E. & T.J. Close, 1998. Genetic studies of Triticeae dehydrins: Assignment of seed proteins and a regulatory factor to map positions. Theor Appl Genet 97: 220–226.Google Scholar
  34. Zhu, H., G. Briceño, R. Dovel, P. Hayes, B. Liu, C. Liu & S. Ullrich, 1999. Molecular breeding for grain yield in barley: An evaluation of QTL effects in a spring barley cross. Theor Appl Genet 98: 772–779.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • J.L. Gonzalez-Hernandez
    • 1
    Email author
  • E.M. Elias
    • 1
  • S.F. Kianian
    • 1
  1. 1.Plant Sciences DepartmentNorth Dakota State UniversityFargoU.S.A.

Personalised recommendations