Advertisement

Euphytica

, Volume 139, Issue 3, pp 207–216 | Cite as

Hybrid performance and AFLP- based genetic similarity in faba bean

  • Mahmoud Zeid
  • Chris-Carolin Schön
  • Wolfgang LinkEmail author
Article

Abstract

Successful prediction of heterosis and performance of F1-hybrids from the genetic similarity of their parents based on molecular markers has been reported in several crops and can be very helpful in hybrid breeding. The relationship between genetic similarities based on amplified fragment length polymorphism (AFLP) of 18 European faba bean lines and their hybrid performance and heterosis was investigated. Parental lines, 62 F1-hybrids and their F2-progenies were evaluated in field trials in four environments in Germany for seed yield, 1,000-seed weight and plant height. Results clearly demonstrated a stable superiority of the hybrids over their inbred parents and elite check cultivars, and showed a marked and varying amount of heterosis. Parental seed yield and F2-hybrid yield were promising as predictors for F1-hybrids. AFLP analysis of the 18 inbred lines using 26 EcoRI/MseI primer combinations resulted in 1202 polymorphic fragments. Cluster analysis based on genetic similarity estimates unambiguously identified pedigree-related inbred lines. No clear separation of the 18 inbred lines into subgroups was detected. Correlation coefficients between genetic similarity estimates and either heterosis or F1-hybrid performance were small and not useful. Also correlations between specific genetic similarity and specific combining ability were too small for all traits to be of predictive value. Results showed that AFLP-based genetic similarities are not useful to predict the performance of hybrids or heterosis within the elite European faba bean gene pool.

Key words

AFLP faba bean genetic similarity heterosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdelmula, A.A., W. Link, E. von Kittlitz & D. Stelling, 1999. Heterosis and inheritance of drought tolerance in faba bean, Vicia faba L. Plant Breeding 118: 485–490.CrossRefGoogle Scholar
  2. Bernardo, R., 1992. Relationship between single-cross performance and molecular marker heterozygosity. Theor Appl Genet 83: 628–634.CrossRefGoogle Scholar
  3. Bond, D.A., G.J. Jellis, G.G. Rowland, J. Le Guen, L.D. Robertson, S.A. Khalil & L. Li Juan, 1994. Present status and future strategy in breeding faba beans (Vicia faba L.) for resistance to biotic and abiotic stresses. Euphytica 73: 151–166.CrossRefGoogle Scholar
  4. Boppenmaier, J., A.E. Melchinger, E. Brunklaus-Jung, H.H. Geiger & R.G. Herrmann, 1992. Genetic diversity for RFLPs in European mais inbreds: I. Relation of performance of Flint × Dent crosses for forage traits. Crop Sci 32: 895–902.CrossRefGoogle Scholar
  5. Charcosset, A. & L. Essioux, 1994. The effect of population structure on the relationship between heterosis and heterozygosity at marker location. Theor Appl Genet 89: 336–343.CrossRefGoogle Scholar
  6. Cochran, W.G. & G.M. Cox, 1957. Experimental Designs, 2nd ed. Wiley, New York.Google Scholar
  7. Comstock, R.E. & H.F. Robinson, 1948. The components of genetic variance in populations of biparental progenies and their use in estimating the average degree of dominance. Biometrics 4: 254–266.PubMedCrossRefGoogle Scholar
  8. Doyle, J.J. & J.L. Doyle, 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.Google Scholar
  9. Ebmeyer, E., 1988. Heterosis and genetic variances and their implications for breeding improved varieties of spring beans (Vicia faba L.). Plant Breeding 101: 200–207.CrossRefGoogle Scholar
  10. Jaccard, P., 1908. Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44: 223–270.Google Scholar
  11. Jordan, D.R., Y. Tao, I.D. Godwin, R.G. Henzell, M. Cooper & C.L. McIntyre, 2003. Prediction of hybrid performance in grain sorghum using RFLP markers. Theor Appl Genet 106: 559-567.PubMedGoogle Scholar
  12. Kittlitz, E.v., 1986. Some observations in reciprocal crosses between Vicia faba major. Biol Zentrabl 105: 147–153.Google Scholar
  13. Link, W., 1990. Autofertility and rate of cross-fertilization: Crucial characters for breeding synthetic varieties in faba beans (Vicia faba L.). Theor Appl Genet 79: 713–717.CrossRefGoogle Scholar
  14. Link, W. & P. Ruckenbauer, 1988. Aspekte der Nutzung von Heterosis bei der Pferdbohne (Vicia faba L.). In: Ber. 38. Arbeitstagung der Vereinigung österreichischer Pflanzenzüchter, pp. 147–162. Gumpenstein, Austria.Google Scholar
  15. Link, W., C. Dixkens, M. Singh, M. Schwall & A.E. Melchinger, 1995. Genetic diversity in European and Mediterranean faba bean germplasm revealed by RAPD markers. Theor Appl Genet 90: 27–32.CrossRefGoogle Scholar
  16. Link, W., B. Schill, A.C. Barbera, J.I. Cubero, A. Filippetti, L. Stringi, E. von Kittlitz & A.E. Melchinger, 1996. Comparison of intra- and inter-pool crosses in faba bean (Vicia faba L.). I. Hybrid performance and heterosis in Mediterranean and German environments. Plant Breeding 115: 352-360.CrossRefGoogle Scholar
  17. Lonnquist, J.H. & M.F. Lindsey, 1964. Topcross versus S1 line performance in corn. Crop Sci 4: 580–584.CrossRefGoogle Scholar
  18. Martsch, R., J. Vaupel, C.C. Schön & W. Link, 2001. Faba bean hybrid breeding: Current results with CMS199. In: Proceedings, 4th European Conference on Grain Legumes, Cracow, Poland, pp. 232–233. Association Européenne de Recherche sur les Protéagineaux (AEP), Paris.Google Scholar
  19. Melchinger, A.E., 1999. Genetic diversity and heterosis. In: J.G. Coors & S. Pandey (Eds.), Genetics and exploitation of heterosis in crops, pp. 99–118. Crop Sci Soc of America, Madison, Wisconsin, USA.Google Scholar
  20. Melchinger, A.E., M. Lee, K.R. Lamkey, A.R. Hallauer & W.L. Woodman, 1990. Genetic diversity for restriction fragment length polymorphisms and heterosis for two diallel sets of maize inbreds. Theor Appl Genet 80: 488–496.CrossRefGoogle Scholar
  21. Riaz, A., G. Li, Z. Quresh, M.S. Swati & C.F. Quiros, 2001. Genetic diversity of oilseed Brassica napus inbred lines based on sequence-related amplified polymorphism and its relation to hybrid performance. Plant Breeding 120: 411–415.CrossRefGoogle Scholar
  22. Rohlf, F.J., 2000. NTSYS-pc. Numerical taxonomy and multivariate analysis system. Exeter Software, New York, USA.Google Scholar
  23. Roman, B., A.M. Torres, D. Rubiales, J.I. Cubero & Z. Sativic, 2002. Mapping of quantitative trait loci controlling broomrape (Orobanche crenata Forsk.) resistance in faba bean (Vicia faba L.). Genome 45: 1057–1063.PubMedCrossRefGoogle Scholar
  24. Schill, B., A.E. Melchinger, R.K. Gumber & W. Link, 1998. Comparison of intra- and inter-pool crosses in faba bean (Vicia faba L.). II. Genetic effects estimated from generation means in Mediterranean and German environments. Plant Breeding 117: 351–359.CrossRefGoogle Scholar
  25. Schnell, F.W., 1982. A synoptic study of the methods and categories of plant breeding. Z Pflanzenzüchtg 89: 1–18.Google Scholar
  26. Smith, J.S.C. & O.S. Smith, 1992. Fingerprinting crop varieties. Advances in Agronomy 47: 85–140.CrossRefGoogle Scholar
  27. Stelling, D., 1992. Core harvesting – essential for the measurement of yield and yield related characters in field trials. In: 8th International Conference on Mechanization of Field Experiments, pp. 30–43, IAMFE, Paderborn, Germany.Google Scholar
  28. Stelling, D., E. von Kittlitz, E. Ebmeyer, O. Sass, H. Jaiser & W. Link, 1994. Erfolge und Perspektiven der züchterischen Verbesserung von Körnererbsen und Ackerbohnen in der EU. In: Ber. 45. Arbeitstagung der Vereinigung österreichischer Pflanzenzüchter, pp. 131–147. Gumpenstein, Austria.Google Scholar
  29. Sun, C.Q., T.B. Jiang, Y.C. Fu & X.K. Wang, 2002. Indica-japonica differentiation of paddy rice and its relationship with heterosis. Plant Breeding 121: 330–337.CrossRefGoogle Scholar
  30. Utz, H.F., 2001. A computer program for statistical analysis of plant breeding experiments. Version 2O. Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Germany.Google Scholar
  31. Yap, I.V. & R.J. Nelson, 1996. WINBOOT: A program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. IRRI Disc. Pap. Ser. Los Baños, Philippines.Google Scholar
  32. Zabeau, M. & P. Vos, 1993. Selective restriction fragment amplification: A general method for DNA fingerprinting. European Patent Office, publication 0 534 858 A1.Google Scholar
  33. Zeid, M., C.C. Schön & W. Link, 2003. Genetic diversity in recent elite faba bean lines using AFLP markers. Theor Appl Genet 107: 1304–1314.CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Mahmoud Zeid
    • 1
  • Chris-Carolin Schön
    • 2
  • Wolfgang Link
    • 1
    Email author
  1. 1.Institute of Agronomy and Plant BreedingGeorg-August-UniversityGöttingenGermany
  2. 2.State Plant Breeding InstituteUniversity of HohenheimStuttgartGermany

Personalised recommendations