Euphytica

, Volume 139, Issue 2, pp 167–172 | Cite as

DNA and morphological markers for a Russian wheat aphid resistance gene

Article

Abstract

The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), is a significant insect pest of wheat worldwide. Morphological and molecular markers associated with RWA resistance could be used to increase the accuracy and efficiency of selection of resistant germplasm and facilitate transfer to desirable wheat genotypes. The objective of this work was to identify microsatellite (SSR) markers linked to the RWA resistance gene (Dn4) and glume-colour gene (Rg2) using a population of F2-derived F3 families originating from a cross between a susceptible line (synthetic hexaploid-11) and a resistance cultivar (Halt). Two microsatellite markers Xgwm106 and Xgwm337 flanked Dn4 on the short arm of chromosome 1D at 5.9 and 9.2 cM, respectively. Two other microsatellite markers, Xpsp2999 and Xpsp3000, at the distal part of this chromosome arm are linked to Dn4 and to Rg2. The accuracy and efficiency of marker-assisted selection were calculated for homozygous Dn4Dn4 genotypes in the F2 generation. The gene Rg2 for red glume colour can also be used for marker-assisted selection of Dn4 gene individually and in combination with microsatellite markers. When used together, the closest markers Xgwm106 and Xgwm337, provide 100% accuracy and 75% efficiency. One hundred percent accuracy is also achieved when the morphological marker red glume is used in combination with either Xgwm106 or Xgwm337. Using these flanking markers, it may be possible to fix resistance to RWA in the first segregating generation of an F2 population without infestation with aphids.

Key words

glume colour marker-assisted selection microsatellites resistance Russian wheat aphid wheat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, G.A., D. Papa, J.H. Peng, M. Tahir & N.L.V. Lapitan, 2003. Genetic mapping of Dn7, a rye gene conferring resistance to the Russian wheat aphid in wheat. Theor Appl Genet 107: 1297–1303.PubMedGoogle Scholar
  2. Baker, R.D. & L.M. English, 1988. The Russian wheat aphid. New Mexico Coop Ext Service Circ 528.Google Scholar
  3. Börner, A., S. Schumann, A. Furste, H. Cöster, B. Leithhold, A.S. Röder & W.E. Weber, 2002. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105: 921–936.CrossRefPubMedGoogle Scholar
  4. Botha, A.M., A.A. Myburg & B.D. Wingfield, 1995. Identification of RAPD markers for Russian wheat aphid resistance in wheat. Plant Physiol 108: 139–139.Google Scholar
  5. Bryan, G.J., A.J. Collins, P. Stephenson, A. Orry, J.B. Smith & M.D. Gale, 1997. Isolation and characterisation of microsatellites from hexaploid bread wheat. Theor Appl Genet 94: 557–563.CrossRefGoogle Scholar
  6. Erker, B., 1998. Utility of molecular marker technology and inheritance of resistance of PI 262660 in breeding Russian wheat aphid-resistant wheats. M.S. Thesis, Colorado State University, Fort Collins, 53 pp.Google Scholar
  7. Haley, S.D., F.B. Peairs, C.B. Walker, J.B. Rudolph & T.L. Randolph, 2004. Occurrence of a new Russian wheat aphid biotype in Colorado. Crop Sci. 44: 1589–1592.CrossRefGoogle Scholar
  8. Haley, S.D., J.S. Quick, T.J. Martin, J.J. Johnson, F.B. Peairs, J.A. Stromberger, S.R. Clayshulte, B.L. Clifford & J.B. Rudolph, 2003. Registration of ‘Avalanche’ wheat. Crop Sci 43: 432.CrossRefGoogle Scholar
  9. Huang, L., S.A. Brooks, W. Li, J.P. Fellers, H.N. Trick & B.S. Gill, 2003. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164: 655–664.PubMedGoogle Scholar
  10. Jones, S.S., J. Dvorak & C.O. Qualset, 1990. Linkage relations of Gli-D1, Rg2, and Lr21 on the short arm of chromosome 1D in wheat. Genome 33: 937–940.Google Scholar
  11. Kosambi, D.D., 1944. The estimation of map distances from recombination values. Ann Eugen. 12: 172–175.Google Scholar
  12. Kovalev, O.V., T.J. Poprawski, A.V. Stekolshchikov, A.B. Vereshchagina & S.A. Grandrabur, 1991. Diuraphis aizenberg (Homoptera: Aphididae): Key to apterous viviparous females, and a review of Russian language literature on the natural history of Diuraphis noxia (Kurdjumov 1913). J Appl Entomol 112: 425–436.Google Scholar
  13. Lander, E.S., P. Green, J. Abrahamson, A. Barlow, M.J. Daly, S.E. Lincoln & L. Newburg, 1987. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.PubMedGoogle Scholar
  14. Legg, A. & S. Amosson, 1993. Economic impact of the Russian wheat aphid in the western United States: 1991–1992. A report by the Russian wheat aphid task force to the Great Plains Agricultural Council (GPAC). GPAC Publication No. 147.Google Scholar
  15. Lincoln, S., M. Daly & E. Lander, 1992 Constructing genetic maps with MAPMAKER/EXP 3.0b. Whitehead Institute Technical Report, 3rd edn., Whitehead Institute, Cambridge, MA, USA.Google Scholar
  16. Liu, X.M., C.M. Smith, B.S. Gill & V. Tolmay, 2001. Microsatellite markers linked to six Russian wheat aphid resistance genes in wheat. Theor Appl Genet 102: 504–510.Google Scholar
  17. Liu, X.M., C.M. Smith & B.S. Gill, 2002. Identification of microsatellite markers linked to Russian wheat aphid resistance genes Dn4 and Dn6. Theor Appl Genet 104: 1042–1048.PubMedGoogle Scholar
  18. Ma, Z.Q., A. Saidi, J.S. Quick & N.L.V. Lapitan, 1998. Genetic mapping of Russian wheat aphid resistance genes Dn2 and Dn4 in wheat. Genome 41: 303–306.Google Scholar
  19. Ma, Z.Q. & M.E. Sorrells, 1995. Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms. Crop Sci 35: 1137–1143.CrossRefGoogle Scholar
  20. Miller, C.A., A. Altinkut & N.L.V. Lapitan, 2001. A microsatellite marker for tagging Dn2, a wheat gene conferring resistance to the Russian wheat aphid. Crop Sci 41: 1584–1589.CrossRefGoogle Scholar
  21. Myburg, A.A., M. Cawood, B.D. Wingfield & A.M. Botha, 1998. Development of RAPD and SCAR markers linked to the Russian wheat aphid resistance gene in Dn2 in wheat. Theor Appl Genet 96: 1162–1169.Google Scholar
  22. Nkongolo, K.K., J.S. Quick F.B. Peairs & W.L. Meyer, 1991. Inheritance of resistance of PI 373129 wheat to the Russian wheat aphid. Crop Sci 31: 905–906.CrossRefGoogle Scholar
  23. Peng, J.H., T. Fahima, M.S. Röder, Y.C. Li, A. Grama & E. Nevo, 2000. Microsatellite high-density mapping of the stripe rust resistance gene YrH52 region on chromosome 1B and evaluation of its marker-assisted selection in the F2 generation in wild emmer wheat. New Phytol 146: 141–154.Google Scholar
  24. Plaschke, J., M.W. Ganal & M.S. Röder, 1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91: 1001–1007.Google Scholar
  25. Quick, J.S., G.E. Ellis, R.M. Normann, J.A. Stromberger, J.F. Shanahan, F.B. Peairs, J.B. Rudolph & K. Lorenz, 1996 Registration of ‘Halt’ wheat. Crop Sci 36: 210.Google Scholar
  26. Quick, J.S., S.D. Haley, J.A. Stromberger, S. Clayshulte, B. Clifford, J.J. Johnson, F.B. Peairs, J.B. Rudolph & K. Lorenz, 2001. Registration of ‘Prowers 99’ Wheat. Crop Sci 41: 929–929.CrossRefGoogle Scholar
  27. Röder, M.S., V. Korzun, K. Wendehake, J. Plaschke, M.H. Tixier, P. Leroy & M.W. Ganal, 1998. A microsatellite map of wheat. Genetics 149: 2007–2023.PubMedGoogle Scholar
  28. Röder, M.S., J. Plaschke, S.U. Konig, A. Borner, M.E. Sorrells, S.D. Tanksley & M.W. Ganal, 1995. Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet 246: 327–333.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Department of Soil and Crop SciencesColorado State UniversityFort CollinsU.S.A.
  2. 2.Agronomy and Plant Breeding DepartmentCollege of Agriculture, Isfahan University of TechnologyIsfahanIran

Personalised recommendations