Advertisement

Bowling Together: Scientific Collaboration Networks of Demographers at European Population Conferences

  • Guy J. Abel
  • Raya Muttarak
  • Valeria Bordone
  • Emilio Zagheni
Article

Abstract

Studies of collaborative networks of demographers are relatively scarce. Similar studies in other social sciences provide insight into scholarly trends of both the fields and characteristics of their successful scientists. Exploiting a unique database of metadata for papers presented at six European Population Conferences, this report explores factors explaining research collaboration among demographers. We find that (1) collaboration among demographers has increased over the past 10 years, however, among co-authored papers, collaboration across institutions remains relatively unchanged over the period, (2) papers based on core demographic subfields such as fertility, mortality, migration and data and methods are more likely to involve multiple authors and (3) multiple author teams that are all female are less likely to co-author with colleagues in different institutions. Potential explanations for these results are discussed alongside comparisons with similar studies of collaboration networks in other related social sciences.

Keywords

Demography Population studies Scientific collaboration Collaboration networks 

Notes

Acknowledgements

We are grateful to the European Association for Population Studies (EAPS) and the PAMPA 5.1 supporting staff for supplying us the data in an electronic format. We are grateful for the suggestions provided by the Associate Editor and two anonymous reviewers.

References

  1. Abramo, G., D’Angelo, C. A., & Murgia, G. (2013). Gender differences in research collaboration. Journal of Informetrics, 7(4), 811–822.  https://doi.org/10.1016/j.joi.2013.07.002.CrossRefGoogle Scholar
  2. Adams, J. (2012). Collaborations: The rise of research networks. Nature, 490(7420), 335–336.  https://doi.org/10.1038/490335a.CrossRefGoogle Scholar
  3. Adams, W. C., Infeld, D. L., Minnichelli, L. F., & Ruddell, M. W. (2014). Policy journal trends and tensions: JPAM and PSJ. Policy Studies Journal, 42, S118–S137.  https://doi.org/10.1111/psj.12051.CrossRefGoogle Scholar
  4. Bäker, A. (2015). Non-tenured post-doctoral researchers’ job mobility and research output: An analysis of the role of research discipline, department size, and coauthors. Research Policy, 44(3), 634–650.  https://doi.org/10.1016/j.respol.2014.12.012.CrossRefGoogle Scholar
  5. Barbieri, M. M., & Berger, J. O. (2004). Optimal predictive model selection. The Annals of Statistics, 32(3), 870–897.  https://doi.org/10.1214/009053604000000238.CrossRefGoogle Scholar
  6. Bird, D. K. S. (2011). Do women publish fewer journal articles than men? Sex differences in publication productivity in the social sciences. British Journal of Sociology of Education, 32(6), 921–937.  https://doi.org/10.1080/01425692.2011.596387.CrossRefGoogle Scholar
  7. Burch, T. K. (2018). Data, models, theory and reality: The structure of demographic knowledge. In Model-based demography (pp. 21–42). Cham: Springer.  https://doi.org/10.1007/978-3-319-65433-1_2.
  8. Ductor, L. (2015). Does co-authorship lead to higher academic productivity? Oxford Bulletin of Economics and Statistics, 77(3), 385–407.  https://doi.org/10.1111/obes.12070.CrossRefGoogle Scholar
  9. Fisher, B. S., Cobane, C. T., Ven, T. M. V., & Cullen, F. T. (1998). How many authors does it take to publish an article? Trends and patterns in political science. PS: Political Science and Politics, 31(4), 847–856.  https://doi.org/10.2307/420730.Google Scholar
  10. Gibson, J., & McKenzie, D. (2014). Scientific mobility and knowledge networks in high emigration countries: Evidence from the Pacific. Research Policy, 43(9), 1486–1495.  https://doi.org/10.1016/j.respol.2014.04.005.CrossRefGoogle Scholar
  11. Gingras, Y., Larivière, V., Macaluso, B., & Robitaille, J.-P. (2008). The effects of aging on researchers’ publication and citation patterns. PLoS ONE, 3(12), e4048.  https://doi.org/10.1371/journal.pone.0004048.CrossRefGoogle Scholar
  12. Glänzel, W., & Schubert, A. (2004). Analysing scientific networks through co-authorship. In H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research (pp. 257–276). Netherlands: Springer.  https://doi.org/10.1007/1-4020-2755-9_12.Google Scholar
  13. Goujon, A., Fürnkranz-Prskawetz, A., & Eder, J. (2015). 40 years of the Vienna Institute of Demography 19752015. From an Austrian to a European to a Global Player. Vienna: Vienna Institute of Demography. http://www.oeaw.ac.at/fileadmin/subsites/Institute/VID/PDF/Publications/diverse_Publications/VID_40years_Web_Final.pdf. Accessed 15 Jan 2018.
  14. Gu, Z. (2016). Circular visualization. https://github.com/jokergoo/circlize. Accessed 23 Jan 2018.
  15. Henriksen, D. (2016). The rise in co-authorship in the social sciences (1980–2013). Scientometrics, 107(2), 455–476.  https://doi.org/10.1007/s11192-016-1849-x.CrossRefGoogle Scholar
  16. Henriksen, D. (2018). What factors are associated with increasing co-authorship in the social sciences? A case study of Danish Economics and Political Science. Scientometrics.  https://doi.org/10.1007/s11192-017-2635-0.Google Scholar
  17. Hunter, L., & Leahey, E. (2008). Collaborative research in sociology: Trends and contributing factors. The American Sociologist, 39(4), 290–306.  https://doi.org/10.1007/s12108-008-9042-1.CrossRefGoogle Scholar
  18. Kahle, D., & Wickham, H. (2013). ggmap: Spatial Visualization with ggplot2. The R Journal, 5(1), 144–161.Google Scholar
  19. Krapf, S., Kreyenfeld, M., & Wolf, K. (2016). Gendered authorship and demographic research: An analysis of 50 years of demography. Demography.  https://doi.org/10.1007/s13524-016-0482-x.Google Scholar
  20. Laband, D. N., & Tollison, R. D. (2000). Intellectual collaboration. Journal of Political Economy, 108(3), 632–662.  https://doi.org/10.1086/262132.CrossRefGoogle Scholar
  21. Larivière, V., Gingras, Y., & Archambault, É. (2013). Canadian collaboration networks: A comparative analysis of the natural sciences, social sciences and the humanities. Scientometrics, 68(3), 519–533.  https://doi.org/10.1007/s11192-006-0127-8.CrossRefGoogle Scholar
  22. Li, L., Catalá-López, F., Alonso-Arroyo, A., Tian, J., Aleixandre-Benavent, R., Pieper, D., et al. (2016). The global research collaboration of network meta-analysis: A social network analysis. PLoS ONE, 11(9), e0163239.  https://doi.org/10.1371/journal.pone.0163239.CrossRefGoogle Scholar
  23. Merchant, E. K. (2015). Prediction and controlGlobal population, population science, and population politics in the twentieth century. Ann Arbor: University of Michigan. Retrieved from http://www.emilyklancher.com/digdemog/tmod/topicmod.html.
  24. Montgomery, J. M., & Nyhan, B. (2010). Bayesian model averaging: Theoretical developments and practical applications. Political Analysis, 18(2), 245–270.  https://doi.org/10.1093/pan/mpq001.CrossRefGoogle Scholar
  25. Moody, J. (2004). The structure of a social science collaboration network: Disciplinary cohesion from 1963 to 1999. American Sociological Review, 69(2), 213–238.  https://doi.org/10.1177/000312240406900204.CrossRefGoogle Scholar
  26. Mullen, L., Blevins, C., & Schmidt, B. (2015). Predict gender from names using historical data. https://github.com/ropensci/gender. Accessed 15 Aug 2016.
  27. Pontille, D. (2003). Authorship practices and institutional contexts in sociology: Elements for a comparison of the United States and France. Science, Technology and Human Values, 28(2), 217–243.CrossRefGoogle Scholar
  28. Raftery, A. E., Hoeting, J., Volinsky, C., Painter, I., & Yeung, K. Y. (2015). BMA: Bayesian model averaging. ftp://cran.r-project.org/pub/R/web/packages/BMA/BMA.pdf. Accessed 01 Nov 2016.
  29. Rigg, L. S., McCarragher, S., & Krmenec, A. (2012). Authorship, collaboration, and gender: Fifteen years of publication productivity in selected geography journals. The Professional Geographer, 64(4), 491–502.  https://doi.org/10.1080/00330124.2011.611434.CrossRefGoogle Scholar
  30. Riley, N. E., & McCarthy, J. (2003). Demography in the age of the postmodern. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  31. Shauman, K. A., & Xie, Y. (1996). Geographic mobility of scientists: Sex differences and family constraints. Demography, 33(4), 455–468.CrossRefGoogle Scholar
  32. Sutter, M., & Kocher, M. (2004). Patterns of co-authorship among economics departments in the USA. Applied Economics, 36(4), 327–333.  https://doi.org/10.1080/00036840410001674259.CrossRefGoogle Scholar
  33. Teachman, J. D., Paasch, K., & Carver, K. P. (1993). Thirty years of demography. Demography, 30(4), 523–532.  https://doi.org/10.2307/2061804.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Asian Demographic Research Institute (ADRI)Shanghai UniversityShanghaiChina
  2. 2.Wittgenstein Centre for Demography and Global Human Capital (IIASA, VID/ÖAW, WU)International Institute for Applied Systems AnalysisLaxenburgAustria
  3. 3.School of International DevelopmentUniversity of East AngliaNorwichUK
  4. 4.Department of SociologyUniversity of MunichMunichGermany
  5. 5.Department of SociologyUniversity of WashingtonSeattleUSA
  6. 6.Max Planck Institute for Demographic ResearchRostockGermany

Personalised recommendations