Advertisement

Ethics and Information Technology

, Volume 21, Issue 4, pp 267–280 | Cite as

Democratizing cognitive technology: a proactive approach

  • Marcello IencaEmail author
Article

Abstract

Cognitive technology is an umbrella term sometimes used to designate the realm of technologies that assist, augment or simulate cognitive processes or that can be used for the achievement of cognitive aims. This technological macro-domain encompasses both devices that directly interface the human brain as well as external systems that use artificial intelligence to simulate or assist (aspects of) human cognition. As they hold the promise of assisting and augmenting human cognitive capabilities both individually and collectively, cognitive technologies could produce, in the next decades, a significant effect on human cultural evolution. At the same time, due to their dual-use potential, they are vulnerable to being coopted by State and non-State actors for non-benign purposes (e.g. cyberterrorism, cyberwarfare and mass surveillance) or in manners that violate democratic values and principles. Therefore, it is the responsibility of technology governance bodies to align the future of cognitive technology with democratic principles such as individual freedom, avoidance of centralized, equality of opportunity and open development. This paper provides a preliminary description of an approach to the democratization of cognitive technologies based on six normative ethical principles: avoidance of centralized control, openness, transparency, inclusiveness, user-centeredness and convergence. This approach is designed to universalize and evenly distribute the potential benefits of cognitive technology and mitigate the risk that such emerging technological trend could be coopted by State or non-State actors in ways that are inconsistent with the principles of liberal democracy or detrimental to individuals and groups.

Keywords

Cognitive technology Democratization Open source Open access Neurotechnology Artificial intelligence Ethics Governance 

Notes

Compliance with ethical standards

Conflict of interests

The author declares no conflict of interest.

References

  1. Beynon, M., Nehaniv, C. L., & Dautenhahn, K. (2003). Cognitive Technology. Instruments of Mind. In 4th International Conference, CT 2001 Coventry, UK, August 6–9, 2001 Proceedings (Vol. 2117), Springer.Google Scholar
  2. Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford: OUPGoogle Scholar
  3. Bostrom, N. (2017). Strategic implications of openness in AI development. Global Policy, 8(2), 135–148.Google Scholar
  4. Bostrom, N., & Sandberg, A. (2009). Cognitive enhancement: Methods, ethics, regulatory challenges. Science and Engineering Ethics, 15(3), 311–341.  https://doi.org/10.1007/s11948-009-9142-5.CrossRefGoogle Scholar
  5. Buch, E., Weber, C., Cohen, L. G., Braun, C., Dimyan, M. A., Ard, T., … Fourkas, A. (2008). Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke, 39(3), 910–917.Google Scholar
  6. Callam, A. (2015). Drone wars: Armed unmanned aerial vehicles. International Affairs Review, 18(3), 122–132.Google Scholar
  7. Cavuoto, J. (2012). Regulatory efficacy. Neurotech Report. Retrieved on December 12, 2017 from http://www.neurotechreports.com/pages/publishersletterOct12.html.
  8. Chacko, P., & Jayasuriya, K. (2017). Trump, the authoritarian populist revolt and the future of the rules-based order in Asia. Australian Journal of International Affairs, 1–7.Google Scholar
  9. Christiano, T. (1993). Social choice and democracy. The idea of democracy (pp. 173–195). Cambridge: Cambridge University Press.Google Scholar
  10. Christiano, T. (2004). The authority of democracy. Journal of Political Philosophy, 12(3), 266–290.Google Scholar
  11. Clark, A. (2001). Reasons, robots and the extended mind. Mind & Language, 16(2), 121–145.Google Scholar
  12. Clark, A. (2003). Natural-Born Cyborgs: Minds, technologies, and the future of human intelligence. Oxford: Oxford University Press.Google Scholar
  13. Clark, A., & Chalmers, D. (1998). The extended mind. Analysis, 58, 7–19.Google Scholar
  14. Collomb, A., & Sok, K. (2016). Blockchain/Distributed Ledger Technology (DLT): What Impact on the Financial Sector? Communications & Strategies, 103, 93.Google Scholar
  15. Dascal, M., & Dror, I. E. (2005). The impact of cognitive technologies: Towards a pragmatic approach. Pragmatics & Cognition, 13(3), 451–457.Google Scholar
  16. De Vito Dabbs, A., Myers, B. A., Curry, M., Dunbar-Jacob, K. R., Hawkins, J., Begey, R. P. A., & Dew, M. A. (2009). User-centered design and interactive health technologies for patients. Computers, Informatics, Nursing: CIN, 27(3), 175.  https://doi.org/10.1097/NCN.0b013e31819f7c7c.CrossRefGoogle Scholar
  17. Deibert, R. (2015). The geopolitics of cyberspace after Snowden. Current History, 114(768), 9.Google Scholar
  18. Dupont, B. (2013). Cybersecurity futures: How can we regulate emergent risks? Technology Innovation Management Review, 3(7), 6.Google Scholar
  19. Ehrenfeld, J. M. (2017). Wannacry, cybersecurity and health information technology: A time to act. Journal of Medical Systems, 41(7), 104.Google Scholar
  20. Europol. (2016). 2016 Internet Organised Crime Threat Assessment (IOCTA) (pp. 0890–8044). Retrieved from https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2016.
  21. Farah, M. J., Illes, J., Cook-Deegan, R., Gardner, H., Kandel, E., King, P., … Wolpe, P. R. (2004). Neurocognitive enhancement: what can we do and what should we do? Nature Reviews Neuroscience, 5(5), 421.Google Scholar
  22. Ferbrache, D. (1992). Historical perspectives. In A pathology of computer viruses (pp. 5–30). London: Springer.zbMATHGoogle Scholar
  23. Fernandez, A., & Nikhil, S. (2015). Pervasive neurotechnology. San Francisco: SharpBrains.Google Scholar
  24. Fitz, N. S., & Reiner, P. B. (2016). Perspective: Time to expand the mind. Nature, 531(7592), S9–S9.  https://doi.org/10.1038/531S9a.CrossRefGoogle Scholar
  25. Floridi, L. (2010). The Cambridge handbook of information and computer ethics. Cambridge: Cambridge University Press.Google Scholar
  26. Floridi, L. (2014a). The fourth revolution: How the infosphere is reshaping human reality. Oxford: OUP.Google Scholar
  27. Floridi, L. (2014b). The latent nature of global information warfare. The Philosophers’ Magazine, 67, 17–19.Google Scholar
  28. Forge, J. (2010). A note on the definition of “Dual Use”. Science and Engineering Ethics, 16(1), 111–118.  https://doi.org/10.1007/s11948-009-9159-9.CrossRefGoogle Scholar
  29. Fu, T.-M., Hong, G., Zhou, T., Schuhmann, T. G., Viveros, R. D., & Lieber, C. M. (2016). Stable long-term chronic brain mapping at the single-neuron level. Nature Methods, 13(10), 875–882.  https://doi.org/10.1038/nmeth.3969.CrossRefGoogle Scholar
  30. Gans, E., Roberts, D., Bennett, M., Towles, H., Menozzi, A., Cook, J., & Sherrill, T. (2015). Augmented reality technology for day/night situational awareness for the dismounted Soldier. In Display technologies and applications for defense, security, and avionics IX; and head-and helmet-mounted displays XX (Vol. 9470, p. 947004). Bellingham: International Society for Optics and PhotonicsGoogle Scholar
  31. Gent, E. (2017). Brain-hacking tech gets real: 5 companies leading the charge. Retrieved on August 2, 2017 from https://www.livescience.com/59326-companies-investing-in-brain-hacking-tech.html.
  32. Gershgorn, D. (2016). The US government seriously wants to weaponize artificial intelligence. Quartz. Retrieved from https://qz.com/767648/weaponized-artificial-intelligence-us-military/.
  33. Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature, 521(7553), 452–459.  https://doi.org/10.1038/nature14541.CrossRefGoogle Scholar
  34. Gilbert, F. (2017). Deep brain stimulation: Inducing self-estrangement. Neuroethics, 11(2), 157–165.MathSciNetCrossRefGoogle Scholar
  35. Gil de Zúñiga, H., Veenstra, A., Vraga, E., & Shah, D. (2010). Digital democracy: Reimagining pathways to political participation. Journal of Information Technology & Politics, 7(1), 36–51.Google Scholar
  36. Giordano, J. (2014). Neurotechnology in National Security and Defense: Practical Considerations. Neuroethical Concerns: CRC Press.Google Scholar
  37. Goering, S., & Yuste, R. (2016). On the necessity of ethical guidelines for novel neurotechnologies. Cell, 167(4), 882–885.Google Scholar
  38. Göhring, D., Latotzky, D., Wang, M., & Rojas, R. (2013). Semi-autonomous car control using brain computer interfaces. Intelligent autonomous Systems, 12, 393–408.Google Scholar
  39. Gorayska, B., & Mey, J. L. (1996). Cognitive technology. In K. S. Gill (Ed.), Information society: New Media, ethics and postmodernism (pp. 287–294). London: Springer.Google Scholar
  40. Halperin, J. M., & Healey, D. M. (2011). The influences of environmental enrichment, cognitive enhancement, and physical exercise on brain development: Can we alter the developmental trajectory of ADHD? Neuroscience and Biobehavioral Reviews, 35(3), 621–634.  https://doi.org/10.1016/j.neubiorev.2010.07.006.CrossRefGoogle Scholar
  41. Helbing, D., Frey, B. S., Gigerenzer, G., Hafen, E., Hagner, M., Hofstetter, Y., … Zwitter, A. (2017). Will democracy survive big data and artificial intelligence. Scientific American. p. 25.Google Scholar
  42. Helbing, D., & Pournaras, E. (2015). Build digital democracy: Open sharing of data that are collected with smart devices would empower citizens and create jobs. Nature, 527(7576), 33–35.Google Scholar
  43. Hodges, A. (2012). Alan Turing: the enigma. New York: Random House.zbMATHGoogle Scholar
  44. Hughes, V. (2010). Head case. Nature, 464(7287), 340.Google Scholar
  45. IBM-THINK. (2017). Transparency and trust in the cognitive era. Retrieved on August, 2017 from https://www.ibm.com/blogs/think/2017/01/ibm-cognitive-principles/.
  46. Ienca, M. (2016). Meet tomorrow’s world: A meeting on the ethics of emerging technologies. Retrieved on March 26, 2017 from http://www.theneuroethicsblog.com/2016/12/meet-tomorrows-worlda-meeting-on-ethics.html.
  47. Ienca, M. (2018). Cognitive technology and human-machine interaction: The contribution of externalism to the theoretical foundations of machine and cyborg ethics. Annals of the University of Bucharest—Philosophy Series; Vol 66 No 2 (2017): Annals of the University of Bucharest: Philosophy Series.Google Scholar
  48. Ienca, M., Fabrice, J., Elger, B., Caon, M., Pappagallo, A. S., Kressig, R. W., & Wangmo, T. (2017). Intelligent assistive technology for Alzheimer’s disease and other dementias: A systematic review. Journal of Alzheimer’s Disease, 56(4), 1301–1340.  https://doi.org/10.3233/jad-161037.CrossRefGoogle Scholar
  49. Ienca, M., & Haselager, P. (2016). Hacking the brain: Brain–computer interfacing technology and the ethics of neurosecurity. Ethics and Information Technology, 18(117), 117–129.Google Scholar
  50. Ienca, M., Jotterand, F., & Elger, B. S. (2018). From healthcare to warfare and reverse: How should we regulate dual-use neurotechnology? Neuron, 97(2), 269–274.  https://doi.org/10.1016/j.neuron.2017.12.017.CrossRefGoogle Scholar
  51. Ienca, M., Jotterand, F., Vică, C., & Elger, B. (2016). Social and assistive robotics in dementia care: Ethical recommendations for research and practice. International Journal of Social Robotics.  https://doi.org/10.1007/s12369-016-0366-7.CrossRefGoogle Scholar
  52. Ikegami, S., Takano, K., Saeki, N., & Kansaku, K. (2011). Operation of a P300-based brain–computer interface by individuals with cervical spinal cord injury. Clinical Neurophysiology, 122(5), 991–996.Google Scholar
  53. Illes, J., & Bird, S. J. (2006). Neuroethics: A modern context for ethics in neuroscience. Trends in neurosciences, 29(9), 511–517.Google Scholar
  54. Inglehart, R., & Norris, P. (2016). Trump, Brexit, and the rise of Populism: Economic have-nots and cultural backlash. KS Working Paper No. RWP16-026. Available at SSRN: https://ssrn.com/abstract=2818659 or  https://doi.org/10.2139/ssrn.2818659. Retrieved on April 12, 2017 from http://wotantue.us/Trump-Brexit-Populism.pdf.
  55. Jamieson, M., Cullen, B., McGee-Lennon, M., Brewster, S., & Evans, J. J. (2014). The efficacy of cognitive prosthetic technology for people with memory impairments: A systematic review and meta-analysis. Neuropsychological Rehabilitation, 24(3–4), 419–444.Google Scholar
  56. Jotterand, F., & Ienca, M. (2017). The Biopolitics of neuroethics. In E. Racine & J. Aspler (Eds.), Debates about neuroethics: perspectives on its development, focus, and future (pp. 247–261). Cham: Springer.Google Scholar
  57. Kaufmann, T., Völker, S., Gunesch, L., & Kübler, A. (2012). Spelling is just a click away – a user-centered brain-computer interface including auto-calibration and predictive text entry. Frontiers in Neuroscience.  https://doi.org/10.3389/fnins.2012.00072.CrossRefGoogle Scholar
  58. Kiger, P. J. (2017). 5 Ways society will be affected by cognitive technology. Retrieved on December 12, 2017 from http://electronics.howstuffworks.com/future-tech/5-ways-society-will-be-affected-by-cognitive-technology.htm.
  59. Kirkpatrick, D. (2007). Cognitive technology threat warning systems (CT2WS). Retrieved on August 2, 2017 from https://web.archive.org/web/20080204203721/http://www.darpa.mil/baa/BAA07-25.html.
  60. Kirkpatrick, K. (2016). Battling algorithmic bias: How do we ensure algorithms treat us fairly? Communications of the ACM, 59(10), 16–17.Google Scholar
  61. Klare, B. F., Burge, M. J., Klontz, J. C., Bruegge, R. W. V., & Jain, A. K. (2012). Face recognition performance: Role of demographic information. IEEE Transactions on Information Forensics and Security, 7(6), 1789–1801.  https://doi.org/10.1109/TIFS.2012.2214212.CrossRefGoogle Scholar
  62. Kosmyna, N., Tarpin-Bernard, F., & Rivet, B. (2015). Towards brain computer interfaces for recreational activities: Piloting a drone. Paper presented at the Human-Computer Interaction.Google Scholar
  63. Kübler, A., Holz, E. M., Riccio, A., Zickler, C., Kaufmann, T., Kleih, S. C., … Mattia, D. (2014). The user-centered design as novel perspective for evaluating the usability of BCI-controlled applications. PLoS ONE, 9(12), e112392.  https://doi.org/10.1371/journal.pone.0112392.CrossRefGoogle Scholar
  64. Kübler, A., Nijboer, F., Mellinger, J., Vaughan, T. M., Pawelzik, H., Schalk, G., … Wolpaw, J. R. (2005). Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology, 64(10), 1775–1777.Google Scholar
  65. Lacy, M., & Prince, D. (2018). Securitization and the global politics of cybersecurity. Global Discourse, 8(1), 100–115.Google Scholar
  66. Langfitt, F. (2013). China beware: A camera may be watching you. NPR, 29, 40.Google Scholar
  67. Langleben, D. D., Hakun, J. G., Seelig, D., Wang, A.-L., Ruparel, K., Bilker, W. B., & Gur, R. C. (2016). Polygraphy and functional magnetic resonance imaging in lie detection: A controlled blind comparison using the concealed information test. The Journal of Clinical Psychiatry, 77(10), 1372–1380.Google Scholar
  68. Langleben, D. D., Loughead, J. W., Bilker, W. B., Ruparel, K., Childress, A. R., Busch, S. I., & Gur, R. C. (2005). Telling truth from lie in individual subjects with fast event-related fMRI. Human Brain Mapping, 26(4), 262–272.  https://doi.org/10.1002/hbm.20191.CrossRefGoogle Scholar
  69. Lee, T.-S., Goh, S. J. A., Quek, S. Y., Phillips, R., Guan, C., Cheung, Y. B., ... Chin, Z. Y. (2013). A brain-computer interface based cognitive training system for healthy elderly: A randomized control pilot study for usability and preliminary efficacy. PLoS ONE, 8(11), e79419.Google Scholar
  70. Liberati, G., Dalboni da Rocha, J. L., van der Heiden, L., Raffone, A., Birbaumer, N., Belardinelli, O. M., & Sitaram, R. (2012). Toward a brain-computer interface for Alzheimer’s disease patients by combining classical conditioning and brain state classification. Journal of Alzheimer’s Disease, 31(Suppl 3), 211–220.  https://doi.org/10.3233/jad-2012-112129.CrossRefGoogle Scholar
  71. Limited, C. T. C. (2014). China telecom 2014 annual work conference highlights [Press release]. Retrieved on August 2, 2017 from http://www.irasia.com/listco/hk/chinatelecom/press/p140103.htm.
  72. Liu, J., Fu, T.-M., Cheng, Z., Hong, G., Zhou, T., Jin, L., … Lieber, C. M. (2015). Syringe-injectable electronics. Nature Nanoelectronics, 10(7), 629–636.  https://doi.org/10.1038/nnano.2015.115.CrossRefGoogle Scholar
  73. Lyon, D. (2014). Surveillance, Snowden, and big data: Capacities, consequences, critique. Big Data & Society, 1(2), 2053951714541861.Google Scholar
  74. Manuti, A., & de Palma, P. D. (2018). The cognitive technology revolution: A new identity for workers. In A. Manuti & P. D. de Palma (Eds.), Digital HR: A critical management approach to the digitilization of organizations (pp. 21–37). Cham: Springer.Google Scholar
  75. Mao, C.-C., Chen, C.-H., & Sun, C.-C. (2017). Impact of an augmented reality system on learning for army military decision-making process (MDMP) course. In M. Soares, C. Falcão, & T. Z. Ahram (Eds.), Advances in ergonomics modeling, usability & special populations: Proceedings of the AHFE 2016 international conference on ergonomics modeling, usability & special populations, July 27–31, 2016, Walt Disney World®, Florida, USA (pp. 663–671). Cham: Springer.Google Scholar
  76. Martinovic, I., Davies, D., Frank, M., Perito, D., Ros, T., & Song, D. (2012). On the feasibility of side-channel attacks with brain-computer interfaces. Paper presented at the USENIX Security Symposium.Google Scholar
  77. Mascarenhas, H. (2016). Elon Musk’s $1bn non-profit launches ‘gym’ to train AI with Atari games. International Business Times.Google Scholar
  78. Matusitz, J. (2005). Cyberterrorism: How can American foreign policy be strengthened in the Information Age? American Foreign Policy Interests, 27(2), 137–147.Google Scholar
  79. McCane, L. M., Heckman, S. M., McFarland, D. J., Townsend, G., Mak, J. N., Sellers, E. W., … Vaughan, T. M. (2015). P300-based brain-computer interface (BCI) event-related potentials (ERPs): People with amyotrophic lateral sclerosis (ALS) vs. age-matched controls. Clinical Neurophysiology, 126(11), 2124–2131.Google Scholar
  80. Millán, J. d. R., Rupp, R., Mueller-Putz, G., Murray-Smith, R., Giugliemma, C., Tangermann, M., … Leeb, R. (2010). Combining brain–computer interfaces and assistive technologies: state-of-the-art and challenges. Frontiers in Neuroscience, 4, 161.Google Scholar
  81. Miranda, R. A., Casebeer, W. D., Hein, A. M., Judy, J. W., Krotkov, E. P., Laabs, T. L., … Sanchez, J. C. (2015). DARPA-funded efforts in the development of novel brain–computer interface technologies. Journal of Neuroscience Methods, 244, 52–67.Google Scholar
  82. Mitterlehner, B. (2014). Cyber-Democracy and Cybercrime: Two Sides of the Same Coin. Cyber-Development, Cyber-Democracy and Cyber-Defense (pp. 207–230). New York: Springer.Google Scholar
  83. Moor, J. H. (2005). Why we need better ethics for emerging technologies. Ethics and Information Technology, 7(3), 111–119.Google Scholar
  84. Moore, B. E. (2013). The brain computer interface future: time for a strategy. Alabama: Air University.Google Scholar
  85. Müller, K.-R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., & Blankertz, B. (2008). Machine learning for real-time single-trial EEG-analysis: From brain–computer interfacing to mental state monitoring. Journal of Neuroscience Methods, 167(1), 82–90.Google Scholar
  86. National Academies of Sciences, E., and Medicine. (2012). The safety promise and challenge of automotive electronics insights from unintended acceleration. Washington, DC: The National Academies Press.Google Scholar
  87. Nissenbaum, H. (2005). Where computer security meets national security. Ethics and Information Technology, 7(2), 61–73.Google Scholar
  88. Ølnes, S., Ubacht, J., & Janssen, M. (2017). Blockchain in government: Benefits and implications of distributed ledger technology for information sharing. Government Information Quarterly, 34(3), 355–364.  https://doi.org/10.1016/j.giq.2017.09.007.CrossRefGoogle Scholar
  89. Open, A. I. (2016). Retrieved from https://openai.com/about/.
  90. Paganini, P. (2014). New powers for the Russian surveillance system SORM-2. Security Affairs. Retrieved on August 2, 2017 from http://securityaffairs.co/wordpress/27611/digital-id/new-powers-sorm-2.html.
  91. Posner, R. A. (2009). Antitrust law: University of Chicago Press.Google Scholar
  92. Powell, C., Munetomo, M., Schlueter, M., & Mizukoshi, M. (2013). Towards thought control of next-generation wearable computing devices. Paper presented at the International Conference on Brain and Health Informatics.Google Scholar
  93. Pycroft, L., Boccard, S. G., Owen, S. L. F., Stein, J. F., Fitzgerald, J. J., Green, A. L., & Aziz, T. Z. (2016). Brainjacking: Implant Security Issues in Invasive Neuromodulation. World Neurosurgery, 92, 454–462.  https://doi.org/10.1016/j.wneu.2016.05.010.CrossRefGoogle Scholar
  94. Russell, S., Dewey, D., & Tegmark, M. (2015). Research priorities for robust and beneficial artificial intelligence. AI Magazine, 36(4), 105–114.Google Scholar
  95. Sapaty, P. (2015). Military robotics: Latest trends and spatial grasp solutions. International Journal of Advanced Research in Artificial Intelligence, 4(4), 9–18.Google Scholar
  96. Sarewitz, D., & Karas, T. H. (2007). Policy implications of technologies for cognitive enhancement. SAND2006-7909. Sandia National Laboratories Albuquerque, New Mexico 87185. Retrieved from http://prod.sandia.gov/techlib/access-control.cgi/2006/067909.pdf.
  97. Schatsky, D., Muraskin, C., & Gurumurthy, R. (2015). Cognitive technologies: The real opportunities for business. Deloitte Review, 16, 115–129.Google Scholar
  98. Selgelid, M. J. (2009). Governance of dual-use research: an ethical dilemma. Bulletin of the World Health Organization, 87(9), 720–723.Google Scholar
  99. Sententia, W. (2004). Neuroethical considerations: cognitive liberty and converging technologies for improving human cognition. Annals of the New York Academy of Sciences, 1013(1), 221–228.Google Scholar
  100. Statt, N. (2017). Elon Musk launches Neuralink, a venture to merge the human brain with AI. The Verge. Retrieved on August 2, 2017 from http://www.theverge.com/2017/3/27/15077864/elon-musk-neuralink-brain-computer-interface-ai-cyborgs.
  101. Stewart, I. I. I. C. (2017). Electoral Vulnerabilities in the United States: Past, Present, and Future. MIT Political Science Department Research Paper(5).Google Scholar
  102. Sweller, J. (1989). Cognitive technology: Some procedures for facilitating learning and problem solving in mathematics and science. Journal of Educational Psychology, 81(4), 457.Google Scholar
  103. Taddeo, M. (2017). Cyberwar: How to regulate nation state warfare on the internet. Retrieved on February 12, 2018 from http://www.scienceviewsthenews.com/cyberwar-how-to-regulate-nation-state-warfare-on-the-internet/.
  104. Taddeo, M., & Floridi, L. (2018). Regulate artificial intelligence to avert cyber arms race. Nature, 556(7701), 296–298.  https://doi.org/10.1038/d41586-018-04602-6.CrossRefGoogle Scholar
  105. Tennison, M. N., & Moreno, J. D. (2012). Neuroscience, ethics, and national security: The state of the art. PLoS Biology, 10(3), e1001289.  https://doi.org/10.1371/journal.pbio.1001289.CrossRefGoogle Scholar
  106. Tonin, L., Carlson, T., Leeb, R., & Millán, J. d. R. (2011). Brain-controlled telepresence robot by motor-disabled people. Paper presented at the Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE.Google Scholar
  107. Tonin, L., Leeb, R., Tavella, M., Perdikis, S., & Millán, J. d. R. (2010). The role of shared-control in BCI-based telepresence. Paper presented at the Systems Man and Cybernetics (SMC), 2010 IEEE International Conference on.Google Scholar
  108. Vincent, J. (2018). Badly implemented AI could ‘jeopardize democracy’. The Verge.Google Scholar
  109. Walker, W. R., & Herrmann, D. J. (2004). Cognitive technology: Essays on the transformation of thought and society. Jefferson, NC: McFarland.Google Scholar
  110. WEF (2016). The global risks report 2016 (11th ed.). World Economic Forum. Retrieved from https://www.weforum.org/reports/the-global-risks-report-2016.
  111. White, A. (2014). Future special operations protection systems (tactical assault light operator suit). Military Technology, 38(12), 70–73.Google Scholar
  112. Yudkowsky, E. (2008). Artificial intelligence as a positive and negative factor in global risk. Global Catastrophic Risks, 1(303), 184.Google Scholar
  113. Yuste, R., Goering, S., Bi, G., Carmena, J. M., Carter, A., Fins, J. J., … Illes, J. (2017). Four ethical priorities for neurotechnologies and AI. Nature News, 551(7679), 159.Google Scholar
  114. Zickler, C., Halder, S., Kleih, S. C., Herbert, C., & Kübler, A. (2013). Brain painting: Usability testing according to the user-centered design in end users with severe motor paralysis. Artificial Intelligence in Medicine, 59(2), 99–110.  https://doi.org/10.1016/j.artmed.2013.08.003.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Health Ethics & Policy Lab, Department of Health Sciences & TechnologyETH ZurichZurichSwitzerland
  2. 2.Institute for Biomedical EthicsUniversity of BaselBaselSwitzerland

Personalised recommendations