Advertisement

Erkenntnis

pp 1–27 | Cite as

On Dummett’s Pragmatist Justification Procedure

  • Hermógenes OliveiraEmail author
Original Research
  • 7 Downloads

Abstract

I show that propositional intuitionistic logic is complete with respect to an adaptation of Dummett’s pragmatist justification procedure. In particular, given a pragmatist justification of an argument, I show how to obtain a natural deduction derivation of the conclusion of the argument from, at most, the same assumptions.

Notes

Acknowledgements

I received very helpful comments and suggestions from members of the research group “Logik und Sprachtheorie” in Tübingen. I am indebted in particular to Peter Schroeder-Heister, who suggested to me the idea of pragmatist canonical arguments with complex conclusions, and to Luca Tranchini, who read and made comments on early drafts. Funding was provided by Deutscher Akademischer Austauschdienst (91562976).

References

  1. Dershowitz, N., & Manna, Z. (1979). Proving termination with multiset orderings. Communications of the ACM, 22(8), 465–476.CrossRefGoogle Scholar
  2. Došen, K. (1987). A note on Gentzen’s decision procedure for intuitionistic propositional logic. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 33, 453–456.CrossRefGoogle Scholar
  3. Dummett, M. (1975). The philosophical basis of intuitionistic logic. In H. Rose & J. Shepherdson (Eds.), Logic colloquium ’73 (Vol. 80, pp. 5–40)., Studies in logic and the foundations of mathematics Amsterdam: North Holland.Google Scholar
  4. Dummett, M. (1991). The logical basis of metaphysics. Cambridge, MA: Harvard University Press.Google Scholar
  5. Dummett, M. (2007). Reply to Dag Prawitz. In R. E. Auxier & L. E. Hahn (Eds.), The philosophy of Michael Dummett (Vol. 31, pp. 482–489)., Library of living philosophers Chicago, La Salle, IL: Open Court Publishing Company. (Chapter 13).Google Scholar
  6. Dyckhoff, R. (1992). Contraction-free sequent calculi for intuitionistic logic. The Journal of Symbolic Logic, 57(3), 795–807.CrossRefGoogle Scholar
  7. Gentzen, G. (1934). Untersuchungen über das logische Schließen I. Mathematische Zeitschrift, 39(2), 176–210.Google Scholar
  8. Goldfarb, W. (2016). On Dummett’s proof-theoretic justification of logical laws. In T. Piecha & P. Schroeder-Heister (Eds.), Advances in proof-theoretic semantics (Vol. 43, pp. 195–210)., Trends in logic Berlin: Springer.CrossRefGoogle Scholar
  9. Hudelmaier, J. (1993). An o(\(n\) log \(n\))-space decision procedure for intuitionistic propositional logic. Journal of Logic and Computation, 3(1), 63–75.CrossRefGoogle Scholar
  10. Piecha, T. (2016). Completeness in proof-theoretic semantics. In T. Piecha & P. Schroeder-Heister (Eds.), Advances in proof-theoretic semantics (Vol. 43, pp. 231–251)., Trends in logic Berlin: Springer.CrossRefGoogle Scholar
  11. Piecha, T., Sanz, W., & Schroeder-Heister, P. (2015). Failure of completeness in proof-theoretic semantics. Journal of Philosophical Logic, 44(3), 321–335.CrossRefGoogle Scholar
  12. Prawitz, D. (1965). Natural deduction: A proof-theoretical study. Stockholm: Almqvist & Wiksell.Google Scholar
  13. Prawitz, D. (1971). Ideas and results in proof theory. In J. E. Fenstad (Eds.), Proceedings of the second scandinavian logic symposium (Vol. 63, pp. 235–307). Studies in logic and the foundations of mathematics Amsterdam: North Holland.Google Scholar
  14. Prawitz, D. (1973). Towards a foundation of a general proof theory. In P. Suppes, L. Henkin, A. Joja, & G. C. Moisil (Eds.), Logic, methodology and philosophy of science IV (Vol. 74, pp. 225–250)., Studies in logic and the foundations of mathematics Amsterdam: North Holland.Google Scholar
  15. Prawitz, D. (1998). Truth and objectivity from a verificationist point of view. In H. G. Dales & G. Oliveri (Eds.), Truth in mathematics (pp. 41–51). Oxford: Claredon Press.Google Scholar
  16. Prawitz, D. (2006). Meaning approached via proofs. Synthese, 148(3), 507–524.CrossRefGoogle Scholar
  17. Prawitz, D. (2007). Pragmatist and verificationist theories of meaning. In R. E. Auxier & L. E. Hahn (Eds.), The philosophy of Michael Dummett (Vol. 31, pp. 455–481)., The library of living philosophers Chicago, La Salle, IL: Open Court Publishing Company. (Chapter 13).Google Scholar
  18. Prawitz, D. (2014). An approach to general proof theory and a conjecture of a kind of completeness of intuitionistic logic revisited. In L. C. Pereira, E. H. Haeusler, & V. de Paiva (Eds.), Advances in natural deduction (Vol. 39, pp. 269–279)., Trends in Logic Dordrecht: Springer.CrossRefGoogle Scholar
  19. Sandqvist, T. (2009). Classical logic without bivalence. Analysis, 69(2), 211–218.CrossRefGoogle Scholar
  20. Sanz, W., Piecha, T., & Schroeder-Heister, P. (2014). Constructive semantics, admissibility of rules and the validity of Peirce’s law. Logic Journal of the IGPL, 22(2), 297–308.CrossRefGoogle Scholar
  21. Schroeder-Heister, P. (2006). Validity concepts in proof-theoretic semantics. Synthese, 148(3), 525–571.CrossRefGoogle Scholar
  22. Schroeder-Heister, P. (2008). Proof-theoretic versus model-theoretic consequence. In M. Peliš (Ed.), The Logica yearbook 2007 (pp. 187–200). Prague: Filosofia.Google Scholar
  23. Schroeder-Heister, P. (2012). The categorical and the hypothetical: A critique of some fundamental assumptions of standard semantics. Synthese, 187(3), 925–942.CrossRefGoogle Scholar
  24. Schroeder-Heister, P. (2015). Proof-theoretic validity based on elimination rules. In E. H. Hauesler, W. Sanz, & B. Lopes (Eds.), Why is this a proof? (Festschrift for Luiz Carlos Pereira) (Vol. 27, pp. 159–176)., Tributes London: College Publications.Google Scholar
  25. Troelstra, A. S., & Schwichtenberg, H. (2000). Basic proof theory (2nd ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Wilhelm-Schickard-InstitutEberhard Karls Universität TübingenTübingenGermany

Personalised recommendations