Advertisement

Erkenntnis

pp 1–32 | Cite as

Two Approaches to Belief Revision

Article

Abstract

In this paper, we compare and contrast two methods for the revision of qualitative (viz., “full”) beliefs. The first (“Bayesian”) method is generated by a simplistic diachronic Lockean thesis requiring coherence with the agent’s posterior credences after conditionalization. The second (“Logical”) method is the orthodox AGM approach to belief revision. Our primary aim is to determine when the two methods may disagree in their recommendations and when they must agree. We establish a number of novel results about their relative behavior. Our most notable (and mysterious) finding is that the inverse of the golden ratio emerges as a non-arbitrary bound on the Bayesian method’s free-parameter—the Lockean threshold. This “golden threshold” surfaces in two of our results and turns out to be crucial for understanding the relation between the two methods.

References

  1. Alchourron, C., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet contraction and revision functions. The Journal of Symbolic Logic, 50(2), 510–530.CrossRefGoogle Scholar
  2. Christensen, D. (2004). Putting logic in its place. Oxford: Oxford University Press.CrossRefGoogle Scholar
  3. Costa, H. L. A. (1990). Conditionals and monotonic belief revisions: The success postulate. Studia Logica, 49, 557–566.CrossRefGoogle Scholar
  4. Darwiche, A., & Pearl, J. (1996). On the logic of iterated belief revision. Artificial Intelligence, 89, 1–29.CrossRefGoogle Scholar
  5. Dodd, D. (2017). Belief and certainty. Synthese, 194(11), 4597–4621.CrossRefGoogle Scholar
  6. Dorst, K. (2014). An epistemic utility argument for the threshold view of outright belief (Forthcoming).Google Scholar
  7. Easwaran, K. (2016). Dr. Truthlove, or how I learned to stop worrying and love Bayesian probabilities. Noûs, 50(4), 816–853.CrossRefGoogle Scholar
  8. Easwaran, K., & Fitelson, B. (2015). Accuracy, coherence, and evidence. Oxford Studies in Epistemology, 5, 61–96.CrossRefGoogle Scholar
  9. Edgington, D. (1995). On conditionals. Mind, 104(414), 235–329.CrossRefGoogle Scholar
  10. Foley, R. (1992). Working without a net. Oxford: Oxford University Press.Google Scholar
  11. Genin, K. (2017). How inductive is Bayesian conditioning. (Unpublished Manuscript).Google Scholar
  12. Georgatos, K. (2009). Geodesic revision. Journal of Logic and Computation, 19(3), 447–459.CrossRefGoogle Scholar
  13. Greaves, H., & Wallace, D. (2006). Justifying conditionalization: Conditionalization maximizes expected epistemic utility. Mind, 115(459), 607–632.CrossRefGoogle Scholar
  14. Grove, A. (1988). Two modellings for theory change. Journal of Philosophical Logic, 17(2), 157–170.CrossRefGoogle Scholar
  15. Gärdenfors, P. (1986). Belief revisions and the Ramsey test for conditionals. The Philosophical Review, 95(1), 81–93.CrossRefGoogle Scholar
  16. Gärdenfors, P. (1986). The dynamics of belief: Contractions and revisions of probability functions. Topoi, 5, 29–37.CrossRefGoogle Scholar
  17. Gärdenfors, P. (1988). Knowledge in flux. Cambridge: MIT Press.Google Scholar
  18. Gärdenfors, P., & Rott, H. (1995). Belief revision. Handbook of logic in artificial intelligence and logic programming (Vol. 4, pp. 35–132). Oxford: Oxford University Press.Google Scholar
  19. Gärdenfors, P., & Makinson, D. (1988). Revision of knowledge systems using epistemic entrenchment. In TARK ’88 Proceedings of the second conference of theoretical aspects of reasoning about knowledge (Vol. 3, pp. 83–95).Google Scholar
  20. Harper, W. (1975). Rational belief change, popper functions and counterfactuals. Synthese, 30(1–2), 221–262.CrossRefGoogle Scholar
  21. Hawthorne, J. (2005). The case for closure. In M. Steup & E. Sosa (Eds.), Contemporary debates in epistemology (pp. 26–42). Oxford: Blackwell.Google Scholar
  22. Hempel, C. (1962). Deductive-nomological vs. statistical explanation. Minnesota Studies in the Philosophy of Science, 3, 98–169.Google Scholar
  23. James, W. (1896). The will to believe. The New World, 5, 327–347.Google Scholar
  24. Joyce, J. M. (2010). Causal reasoning and backtracking. Philosophical Studies, 147(1), 139–154.CrossRefGoogle Scholar
  25. Katsuno, H., & Mendelzon, A. O. (1991). On the difference between updating a knowledge base and revising it. In J. Allen, R. Fikes, & E. Sandewall (Eds.), Principles of knowledge representation and reasoning: Proceedings of the second international conference (KR ’91) (pp. 387–394). Burlington: Morgan Kaufmann.Google Scholar
  26. Kyburg, H. (1961). Probability and the logic of rational belief. Middletown: Wesleyan University Press.Google Scholar
  27. Lehmann, D., & Magidor, M. (2002). What does a conditional knowledge base entail? Journal of Artificial Intelligence, 44(1), 167–207.Google Scholar
  28. Leitgeb, H. (2013). The review paradox: On the diachronic costs of not closing rational belief under conjunction. Noûs, 78(4), 781–793.Google Scholar
  29. Leitgeb, H. (2014). The stability theory of belief. Philosophical Review, 123(2), 131–171.CrossRefGoogle Scholar
  30. Leitgeb, H. (2016). Stability theory of belief. Oxford: Oxford University Press.Google Scholar
  31. Levi, I. (1973). Gambling with truth: An essay on induction and the aims of science. Cambridge: MIT Press.Google Scholar
  32. Levi, I. (1996). For the sake of argument. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  33. Lin, H., & Kelly, K. T. (2012). Propositional reasoning that tracks probabilistic reasoning. Journal of Philosophical Logic, 41(6), 957–981.CrossRefGoogle Scholar
  34. Makinson, D., & Hawthorne, J. (2015). Lossy inference rules and their bounds: A brief review. In A. Koslow, & A. Buchsbaum (Eds.), The road to universal logic. Studies in universal logic. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-10193-4_18.
  35. Pettigrew, R. (2016). Jamesian epistemology formalised: An explication of ‘The Will to Believe’. Episteme, 13(3), 253–268.CrossRefGoogle Scholar
  36. Pettigrew R. (2016). Epistemic utility arguments for probabilism. In: E. Zalta (Ed.) The Stanford encyclopedia of philosophy (Spring 2016 Edition). http://plato.stanford.edu/archives/spr2016/entries/epistemic-utility/.
  37. Rabinowicz, W. (1995). Stable revision, or is preservation worth preserving? In A. Fuhrmann, & H. Rott (Eds.) Logic, action and information: Essays on logic in philosophy and artificial intelligence (pp. 101–128). Berlin.Google Scholar
  38. Rodrigues, O., Gabbay, D. M., & Russo, A. (2011). Belief revision. In D. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic v. 16 (pp. 1–114). New York, NY: Springer.Google Scholar
  39. Rott, H. (1999). Coherence and conservatism in the dynamics of belief part I: Finding the right framework. Erkenntnis, 50, 387–412.CrossRefGoogle Scholar
  40. Rott, H. (2000). Two dogmas of belief revision. Journal of Philosophy, 97(9), 503–522.CrossRefGoogle Scholar
  41. Rott, H. (2001). Change, choice, and inference. Oxford: Oxford University Press.Google Scholar
  42. Steinberger, F. (2016). Explosion and the normativity of logic. Mind, 125(498), 385–419.CrossRefGoogle Scholar
  43. van Eijck, J., & Renne, B. (2014). Belief as willingness to bet. http://arxiv.org/abs/1412.5090.

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of EconomicsUniversity of QueenslandBrisbaneAustralia
  2. 2.Philosophy DepartmentNortheastern UniversityBostonUSA

Personalised recommendations