Advertisement

Erkenntnis

, Volume 84, Issue 1, pp 121–143 | Cite as

Cognitive Penetration and Memory Colour Effects

  • Dimitria Electra GatziaEmail author
Article

Abstract

Cognition can influence action. Your belief that it is raining outside, for example, may cause you to reach for the umbrella. Perception can also influence cognition. Seeing that no raindrops are falling, for example, may cause you to think that you don’t need to reach for an umbrella. The question that has fascinated philosophers and cognitive scientists for the past few decades, however, is whether cognition can influence perception. Can, for example, your desire for a rainy day cause you to see, hear, or feel raindrops when you walk outside? More generally, can our cognitive states (such as beliefs, desires or intentions) influence the way we see the external world? In this paper, I discuss three experiments on memory colour effects. In these experiments, subjects systematically made different colour matches or adjustments for object-patches representing objects that have prototypical colours and neutral object-patches. I argue that these differences are not merely differences in judgments but are best explained in terms of phenomenology. However, I show that these differences in phenomenology can be explained without reference to cognitive states such as colour concepts or beliefs.

References

  1. Arstila, V. (2016). Perceptual learning explains two candidates for cognitive penetration. Erkenntnis, 81(6), 1151–1172.Google Scholar
  2. Barlow, H. B. (1997). The knowledge used in vision and where it comes from. The Philosophical Transactions of the Royal Society of London (B series), 352(1358), 1141–1147.Google Scholar
  3. Bartels, A., & Zeki, S. (2000). The architecture of the colour centre in the human visual brain: New results and a review. European Journal of Neuroscience, 12, 172–193.Google Scholar
  4. Bartleson, C. J. (1960). Memory colors of familiar objects. Journal of the Optical Society of America, 50(1), 73–77.Google Scholar
  5. Bolles, R. C., Hulicka, I. M., & Hanly, B. (1959). Colour judgement as a function of stimulus conditions and memory colour. Canadian Journal of Psychology, 13, 175–185.  https://doi.org/10.1037/h0083774.Google Scholar
  6. Brady, M. (1997). The forms of knowledge mobilized in some machine vision systems. The Philosophical Transactions of the Royal Society of London (B series), 352(1358), 1241–1248.Google Scholar
  7. Brainard, D. (2009). Bayesian approaches to color vision. In M. Gazzaniga (Ed.), The visual neurosciences (4th ed.). Cambridge, MA: MIT Press.Google Scholar
  8. Brainard, D. H., & Freeman, W. T. (1997). Bayesian colour constancy. Journal of the Optical Society of America A., 14(7), 1393–1411.Google Scholar
  9. Brogaard, B., & Gatzia, D. E. (2017). Color and cognitive penetrability. Topics in Cognitive Science: Special Issue on Cortical Color, 9(1), 193–214.Google Scholar
  10. Bruce, V., & Burton, M. (2002). Learning to recognize faces. In M. Fahle & T. Poggio (Eds.), Perceptual learning (pp. 317–334). Cambridge, MA: MIT Press.Google Scholar
  11. Bruner, J. S., Postman, L., & Rodrigues, J. (1951). Expectation and the perception of color. The American Journal of Psychology, 64(2), 216–227.Google Scholar
  12. Brunner, J. S., & Goodman, C. C. (1947). Value and need as organizing factors of perception. Journal of Experimental Psychology: Human Perception and Performance, 25, 1076–1096.Google Scholar
  13. Brunner, J. S., & Postman, L. (1949). On the perception of incongruity: A paradigm. Journal of Personality, 18, 203–206.Google Scholar
  14. Burge, T. (2010). Origins of objectivity. Oxford: Oxford University Press.Google Scholar
  15. Cavanagh, P. (2011). Visual cognition. Vision Research, 51, 1538–1551.  https://doi.org/10.1016/j.visres.2011.01.015.Google Scholar
  16. Cecchi, A. S. (2014). Cognitive penetration, perceptual learning, and neural plasticity. Dialectica, 68(1), 63–95.Google Scholar
  17. Churchland, P. M. (1988). Perceptual plasticity and theoretical neutrality: A reply to Jerry Fodor. Philosophy of Science, 55, 167–187.Google Scholar
  18. Cliff, D., & Noble, J. (1997). Knowledge-based vision and simple visual machines. The Philosophical Transactions of the Royal Society of London (B series), 352(1358), 1165–1175.Google Scholar
  19. Dannemiller, J. L. (1989). A test of color constancy in 9- and 20-week-old human infants. Developmental Psychology, 25, 171–184.Google Scholar
  20. Dannemiller, J. L., & Hanko, S. A. (1987). A test of color constancy in 4-month-old human infants. Journal of Experimental Child Psychology, 44, 255–267.Google Scholar
  21. De Vreese, L. P. (1991). Two systems for colour-naming defects: Verbal disconnection vs colour imagery disorder. Neuropsychology, 29, 1–18.  https://doi.org/10.1016/0028-3932(91)90090-U.Google Scholar
  22. Delk, J., & Fillenbaum, S. (1965). Differences in perceived color as a function of characteristic color. The American Journal of Psychology, 78(2), 290–293.Google Scholar
  23. Dunker, K. (1939). The influence of past experience upon perceptual properties. The American Journal of Psychology, 52, 255–265.Google Scholar
  24. Edelman, S., & Duvdevani-Bar, S. (1997). A model of visual recognition and categorization. The Philosophical Transactions of the Royal Society of London (B series), 352(1358), 1191–1202.Google Scholar
  25. Fodor, J. (1988). A reply to Churchland’s ‘Perceptual Plasticity and Theoretical Neutrality’. Philosophy of Science, 55(2), 188–198.  https://doi.org/10.1086/289426.Google Scholar
  26. Fodor, J. A. (2000). The mind doesn’t work that way: The scope and limits of computational psychology. Cambridge, MA: MIT Press.Google Scholar
  27. Foster, D. H., & Nascimento, S. M. C. (1994). Relational colour constancy from invariant cone-excitation ratios. Proceedings: Biological Sciences, 257(1349), 115–121.Google Scholar
  28. Frith, C., & Dolan, R. J. (1997). Brain mechanisms associated with top-down processes in perception. The Philosophical Transactions of the Royal Society of London (B series), 352(1358), 1221–1230.Google Scholar
  29. Gatzia, D., & Brogaard, B. (2017). Unconscious imagination and the imagery debate. Frontiers in Psychology, 8, 799.  https://doi.org/10.3389/fpsyg.2017.00799.Google Scholar
  30. Gilbert, C. D., & Li, W. (2013). Top-down influences on visual processing. Nature Reviews Neuroscience, 14, 351.Google Scholar
  31. Goffaux, V., Jacques, C., Mouraux, A., Oliva, A., Schyns, P. G., & Rossion, B. (2004). Diagnostic colors contribute to the early stages of scenes categorization: Behavioral and neurophysiological evidence. Journal of Vision, 4(8), 873.  https://doi.org/10.1167/4.8.873.Google Scholar
  32. Goldstone, R. L. (1998). Perceptual learning. Annual Review of Psychology, 49, 585–612.  https://doi.org/10.1146/annurev.psych.49.1.585.Google Scholar
  33. Gregory, L. R. (1970). The intelligent eye. London: Weidenfeld & Nicolson.Google Scholar
  34. Gregory, L. R. (1997). Knowledge in perception and illusion. The Philosophical Transactions of the Royal Society of London (B series), 352(1358), 1121–1127.Google Scholar
  35. Gregory, L. R. (2009). Seeing through illusions. Oxford: Oxford University Press.Google Scholar
  36. Hansen, T., Olkkonen, M., Walter, S., & Gegenfurtner, K. R. (2006). Memory modulates color appearance. Nature Neuroscience, 9(11), 1367–1368.Google Scholar
  37. Hering, E. (1878/1964). Outlines of a theory of the light sense (trans: Hurvich, L. & Jameson, D.). Cambridge, MA: Harvard University Press.Google Scholar
  38. Herring, B. S., & Bryden, M. P. (1970). Memory colour effects as a function of viewing time. Canadian Journal of Psychology/Revue canadienne de psychologie, 24(2), 127–132.  https://doi.org/10.1037/h0082840.Google Scholar
  39. Heywood, C. A., & Kentridge, R. W. (2003). Achromatopsia, colour vision and cortex. Neurological Clinics of North America, 21, 483–500.Google Scholar
  40. Heywood, C. A., Kentridge, R. W., & Cowey, A. (2001). Colour and the cortex: Wavelength processing in cortical achromatopsia. In B. De Gelder, E. De Haan, & C. A. Heywood (Eds.), Varieties of unconscious processing: New findings and models (pp. 52–68). Oxford: Oxford University Press.Google Scholar
  41. Humphreys, G. W., Riddoch, M. J., & Price, J. C. (1997). Top-down processes in object identification: Evidence from experimental psychology, neuropsychology and functional anatomy. The Philosophical Transactions of the Royal Society of London (B series), 352(1358), 1275–1282.Google Scholar
  42. Hurlbert, A. (1999). Colour vision: Is colour constancy real? Current Biology, 9(15), 558–561.  https://doi.org/10.1016/S0960-9822(99)80354-6.Google Scholar
  43. Hurlbert, A., & Ling, Y. (2005). If it’s a banana, it must be yellow: The role of memory colors in color constancy. Journal of Vision, 5(8), 787.  https://doi.org/10.1167/5.8.787.Google Scholar
  44. Hurlbert, A. C., Bramwell, D. I., Heywood, C. A., & Cowey, A. C. (1998). Discrimination of cone contrast changes as evidence for colour constancy in cerebral achromatopsia. Experimental Brain Research, 123, 136–144.Google Scholar
  45. Hurvich, L. M. (1981). Color vision. Sunderland, MA: Sinauer Associates.Google Scholar
  46. Kentridge, R., Norman, L. Akins, K., & Heywood, C. (2014). Colour constancy without consciousness, presented at the towards a science of consciousness conference, Tucson.Google Scholar
  47. Ling, Y., & Hurlbert, A. (2008). Role of color memory in successive color constancy. Journal of the Optical Society of America A., 25(6), 1215–1226.Google Scholar
  48. Macpherson, F. (2012). Cognitive penetration of colour experience: Rethinking the issue in light of an indirect mechanism. Philosophy and Phenomenological Research, 74(1), 24–62.Google Scholar
  49. Mamassian, P., Landy, M., & Maloney, L. T. (2002). Bayesian modeling of visual perception. In R. P. N. Rao, B. Olshausen, & M. S. Lewicki (Eds.), Probabilistic models of the brain: Perception and neural function. Cambridge, MA: The MIT Press.Google Scholar
  50. Milner, A. D. (1997). Vision without knowledge. The Philosophical Transactions of the Royal Society of London (B series), 352(1358), 1249–1256.Google Scholar
  51. Nanay, B. (2010). Perception and imagination: A modal perception as mental imagery. Philosophical Studies, 150(2), 239–254.Google Scholar
  52. Nelder, J. A. (1986). Statistics, science and technology. Journal of the Royal Statistical Society Series A-Statistics in Society, 149, 109–121.Google Scholar
  53. Oliva, A., & Schyns, P. G. (2000). Colored diagnostic blobs mediate scene recognition. Cognitive Psychology, 41, 176–210.Google Scholar
  54. Olkkonen, M., Hansen, T., & Gegenfurtner, K. (2008). Color appearance of familiar objects: Effects of object shape, texture, and illumination changes. Journal of Vision, 8(5), 1–16.Google Scholar
  55. Palmer, S. E. (1975). Visual perception and world knowledge: Notes on a model of sensory-cognitive interaction. In D. A. Norman & D. E. Rumelhart (Eds.), Explorations in cognition (pp. 279–307). San Francisco: Freeman.Google Scholar
  56. Prinzmetal, W. (1990). Neon colors illuminate reading units. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 584–597. https://doi.org/10.1037/0096-1523.16.3.584.Google Scholar
  57. Pylyshyn, Z. (1999). Is vision continuous with cognition? The Case for Cognitive Impenetrability of Visual Perception, Behavioral and Brain Sciences, 22, 341–423.Google Scholar
  58. Raftopoulos, A. (2001). Is perception informationally encapsulated? The issue of the theory-ladenness of perception. Cognitive Science, 25(3), 423–451.  https://doi.org/10.1207/s15516709cog2503_4.Google Scholar
  59. Raftopoulos, A. (2009). Cognition and perception: How do psychology and neural science inform philosophy?. Cambridge, MA: MIT Press.Google Scholar
  60. Rescorla, M. (2013). Bayesian perceptual psychology. In Mohan Matthen (Ed.), The Oxford handbook of the philosophy of perception (pp. 694–716). New York: Oxford University Press.Google Scholar
  61. Ruettiger, L., Braun, D. I., Gegenfurtner, K. R., Petersen, D., Schoenle, P., & Sharpe, L. T. (1999). Selective color constancy deficits after circumscribed unilateral brain lesions. Journal of Neuroscience, 19, 3094–3106.Google Scholar
  62. Shuren, J. E., Brott, T. G., Schefft, B. K., & Houston, W. (1996). Preserved color imagery in an achromatopsic. Neuropsychologia, 34, 485–489.  https://doi.org/10.1016/0028-3932(95)00153-0.Google Scholar
  63. Siegel, S. (2012). Cognitive penetrability and perceptual justification. Noûs, 46(2), 201–222.Google Scholar
  64. Smet, K., Ryckaert, W. R., Pointer, M. R., Deconinck, G., & Hanselaer, P. (2011). Colour appearance rating of familiar real objects. Color Research and Application, 36(3), 192–200.Google Scholar
  65. Stokes, D. (2013). Cognitive penetrability of perception. Philosophy Compass, 8(7), 646–663.Google Scholar
  66. Summerfield, C., & Egner, T. (2009). Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 13(9), 403–409.Google Scholar
  67. Tanaka, J. W., & Pressnell, L. M. (1999). Color diagnosticity in object recognition. Perception and Psychophysics, 61(6), 1140–1153.Google Scholar
  68. Taylor, C. J., Cootes, T. F., Lanitis, A., Edwards, G., Smyth, P., & Kotcheff, A. C. W. (1997). Model-based interpretation of complex and variable images. The Philosophical Transactions of the Royal Society of London (B series), 352(1358), 1267–1274.Google Scholar
  69. Teufel, C., & Nanay, B. (2017). How to (and how not to) think about top-down influences on visual perception. Consciousness and Cognition, 47, 17–25.Google Scholar
  70. Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185, 1124–1131.Google Scholar
  71. Van Gulick, A., & Tarr, M. (2010). Is object color memory categorical? Journal of Vision, 10(7), 407.  https://doi.org/10.1167/10.7.407.Google Scholar
  72. von Helmholtz, H. (1866). Concerning the perceptions in general. In Treatise on physiological optics (Vol. III, 3rd ed.) (trans: Southall, J. P. C.). (Reprinted Optical Society of America, Section 26, 1925. New York: Dover, 1962).Google Scholar
  73. Wasserman, G. S. (1978). Color vision: An historical introduction. New York: Wiley.Google Scholar
  74. Wu, W. (2013). Visual spatial constancy and modularity: Does intention penetrate vision? Philosophical Studies, 165, 647–669.Google Scholar
  75. Wurm, L. H., Legge, G. E., Isenberg, L. M., & Luebker, A. (1993). Color improves object recognition in normal and low vision. Journal of Experimental Psychology: Human Perception and Performance, 19(4), 899–911.  https://doi.org/10.1037/0096-1523.19.4.899.Google Scholar
  76. Yang, J., Kanazawa, S., Yamaguchi, M. K., & Kuriki, I. (2009). Color constancy in 4- to 5- month old infants. Journal of Vision, 9(8), 327.  https://doi.org/10.1167/9.8.327.Google Scholar
  77. Zeimbekis, John. (2013). Color and cognitive penetrability. Philosophical Studies, 165, 167–175.Google Scholar
  78. Zeki, S., Aglioti, S., McKeefry, D., & Berlucchi, G. (1999). The neurological basis of conscious color perception in a blind patient. Proceedings of the National Academy of Sciences USA, 96, 14124–14129.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of PhilosophyThe University of Akron/Wayne CollegeAkronUSA
  2. 2.Centre for Philosophical PsychologyUniversity of AntwerpAntwerpBelgium

Personalised recommendations