, Volume 82, Issue 6, pp 1233–1252 | Cite as

Action Is Enabled by Systematic Misrepresentations

  • Wanja WieseEmail author
Original Research


According to active inference (which subsumes the framework of predictive processing), action is enabled by a top-down modulation of sensory signals. Computational models of this mechanism complement ideomotor theories of action representation. Such theories postulate common neural representations for action and perception, without specifying how action is enabled by such representations. In active inference, motor commands are replaced by proprioceptive predictions. In order to initiate action through such predictions, sensory prediction errors have to be attenuated. This paper argues that such top-down modulation involves systematic (but paradoxically beneficial) misrepresentations. More specifically, the paper first argues for the following conditional claim. If active inference provides an accurate computational description of how action is enabled in the brain, then action is enabled by systematic misrepresentations. Furthermore, it is argued that an inference to the best explanation provides reason for believing the antecedent is true: Firstly, active inference provides a crucial extension to ideomotor theories. Secondly, active inference explains otherwise puzzling phenomena related to sensory attenuation, e.g. in force-matching or self-tickling paradigms. Taken together, these reasons support the claim that action is indeed enabled by systematic misrepresentations. The claim casts doubt on the assumption that representations are systematically beneficial to the extent that they are true: if the argument in this paper is sound, systematically beneficial misrepresentations may lie at the heart of our neural architecture.



I am highly grateful to Jakob Hohwy for providing very detailed and helpful feedback on an earlier version of this paper. Some of the ideas present in this paper were presented in a talk I gave at a workshop in the context of the Carnap lectures in March 2014 in Bochum. I am grateful to the audience of that workshop, special thanks to the organizers Albert Newen and Tobias Schlicht, and to Peter Brössel and Daniel Dennett. A previous version of this paper was presented at the Journal Club of the theoretical philosophy group at Mainz University, organized by Thomas Metzinger; thanks to all participants. Another version was presented at Spindel 2014 in Memphis. Thanks to the organizer Shaun Gallagher, as well as to the audience of that conference. Thanks to two anonymous referees for providing a number of very helpful comments. Part of the work on this paper was supported by a scholarship of the Barbara Wengeler foundation.


  1. Adams, R. A., Shipp, S., & Friston, K. J. (2013). Predictions not commands: Active inference in the motor system. Brain Structure and Function, 218(3), 611–643. doi: 10.1007/s00429-012-0475-5.CrossRefGoogle Scholar
  2. Bäß, P., Jacobsen, T., & Schröger, E. (2008). Suppression of the auditory N1 event-related potential component with unpredictable self-initiated tones: Evidence for internal forward models with dynamic stimulation. International Journal of Psychophysiology, 70(2), 137–143.CrossRefGoogle Scholar
  3. Blakemore, S.-J., Frith, C. D., & Wolpert, D. M. (1999). Spatio-temporal prediction modulates the perception of self-produced stimuli. Journal of Cognitive Neuroscience, 11(5), 551–559. doi: 10.1162/089892999563607.CrossRefGoogle Scholar
  4. Botvinick, M., & Cohen, J. (1998). Rubber hands ‘feel’ touch that eyes see. Nature, 391(6669), 756.CrossRefGoogle Scholar
  5. Brown, H., Adams, R., Parees, I., Edwards, M., & Friston, K. (2013). Active inference, sensory attenuation and illusions. Cognitive Processing, 14(4), 411–427. doi: 10.1007/s10339-013-0571-3.CrossRefGoogle Scholar
  6. Chapman, C., Bushnell, M., Miron, D., Duncan, G., & Lund, J. (1987). Sensory perception during movement in man. Experimental Brain Research, 68(3), 516–524.CrossRefGoogle Scholar
  7. Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204. doi: 10.1017/S0140525X12000477.CrossRefGoogle Scholar
  8. Clark, A. (2015). Radical predictive processing. The Southern Journal of Philosophy, 53, 3–27. doi: 10.1111/sjp.12120.CrossRefGoogle Scholar
  9. Clark, A. (2016). Surfing uncertainty: Prediction, action, and the embodied mind. New York: Oxford University Press.CrossRefGoogle Scholar
  10. Feldman, H., & Friston, K. J. (2010). Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience. doi: 10.3389/fnhum.2010.00215.Google Scholar
  11. Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. doi: 10.1038/nrn2787.CrossRefGoogle Scholar
  12. Friston, K. (2011). What is optimal about motor control? Neuron, 72(3), 488–498. doi: 10.1016/j.neuron.2011.10.018.CrossRefGoogle Scholar
  13. Friston, K., Adams, R., Perrinet, L., & Breakspear, M. (2012a). Perceptions as hypotheses: Saccades as experiments. Frontiers in Psychology. doi: 10.3389/fpsyg.2012.00151.Google Scholar
  14. Friston, K., Mattout, J., & Kilner, J. (2011). Action understanding and active inference. Biological Cybernetics, 104(1–2), 137–160. doi: 10.1007/s00422-011-0424-z.CrossRefGoogle Scholar
  15. Friston, K., Samothrakis, S., & Montague, R. (2012b). Active inference and agency: Optimal control without cost functions. Biological Cybernetics, 106(8), 523–541. doi: 10.1007/s00422-012-0512-8.CrossRefGoogle Scholar
  16. Friston, K. J., & Stephan, K. E. (2007). Free-energy and the brain. Synthese, 159(3), 417–458. doi: 10.1007/s11229-007-9237-y.CrossRefGoogle Scholar
  17. Gigerenzer, G., Todd, P. M., & the ABC Research Group. (1999). Simple heuristics that make us smart. New York: Oxford University Press.Google Scholar
  18. Herbart, J. F. (1825). Psychologie als Wissenschaft neu gegründet auf Erfahrung, Metaphysik und Mathematik. Zweiter, analytischer Teil. Königsberg: Unzer.Google Scholar
  19. Hohwy, J. (2013). The predictive mind. Oxford: Oxford University Press.CrossRefGoogle Scholar
  20. Hommel, B. (2015). The theory of event coding (TEC) as embodied-cognition framework. Frontiers in Psychology. doi: 10.3389/fpsyg.2015.01318.Google Scholar
  21. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–878. doi: 10.1017/S0140525X01000103.CrossRefGoogle Scholar
  22. Humberstone, I. L. (1992). Direction of fit. Mind, 101(401), 59–83.CrossRefGoogle Scholar
  23. Hurley, S. L. (1998). Vehicles, contents, conceptual structure, and externalism. Analysis, 58(1), 1–6.CrossRefGoogle Scholar
  24. James, W. (1890). The principles of psychology. New York: Henry Holt.CrossRefGoogle Scholar
  25. Lotze, R. H. (1852). Medicinische Psychologie oder Physiologie der Seele. Leipzig: Weidmann’sche Buchhandlung.Google Scholar
  26. McKay, R. T., & Dennett, D. C. (2009). The evolution of misbelief. Behavioral and Brain Sciences, 32(6), 493–510. doi: 10.1017/S0140525X09990975.CrossRefGoogle Scholar
  27. Mendelovici, A. (2013). Reliable misrepresentation and tracking theories of mental representation. Philosophical Studies, 165(2), 421–443. doi: 10.1007/s11098-012-9966-8.CrossRefGoogle Scholar
  28. Milne, R., Aniss, A., Kay, N., & Gandevia, S. (1988). Reduction in perceived intensity of cutaneous stimuli during movement: A quantitative study. Experimental Brain Research, 70(3), 569–576.CrossRefGoogle Scholar
  29. Pickering, M. J., & Clark, A. (2014). Getting ahead: Forward models and their place in cognitive architecture. Trends in Cognitive Sciences, 18(9), 451–456. doi: 10.1016/j.tics.2014.05.006.CrossRefGoogle Scholar
  30. Prinz, W. (1990). A common coding approach to perception and action. In O. Neumann & W. Prinz (Eds.), Relationships between perception and action (pp. 167–201). Berlin: Springer.CrossRefGoogle Scholar
  31. Ramsey, W. (2007). Representation reconsidered. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  32. Rushton, D., Roghwell, J., & Craggs, M. (1981). Gating of somatosensory evoked potentials during different kinds of movement in man. Brain, 104(3), 465–491.CrossRefGoogle Scholar
  33. Sharot, T. (2011). The optimism bias. Current Biology, 21(23), R941–R945. doi: 10.1016/j.cub.2011.10.030.CrossRefGoogle Scholar
  34. Shergill, S. S., Bays, P. M., Frith, C. D., & Wolpert, D. M. (2003). Two eyes for an eye: The neuroscience of force escalation. Science, 301(5630), 187. doi: 10.1126/science.1085327.CrossRefGoogle Scholar
  35. Shergill, S. S., Samson, G., Bays, P. M., Frith, C. D., & Wolpert, D. M. (2005). Evidence for sensory prediction deficits in schizophrenia. American Journal of Psychiatry, 162(12), 2384–2386.CrossRefGoogle Scholar
  36. Shipp, S., Adams, R. A., & Friston, K. J. (2013). Reflections on agranular architecture: Predictive coding in the motor cortex. Trends in Neurosciences, 36(12), 706–716. doi: 10.1016/j.tins.2013.09.004.CrossRefGoogle Scholar
  37. Taylor, S. E. (1989). Positive illusions: Creative self-deception and the healthy mind. New York, NY: Basic Books.Google Scholar
  38. Trivers, R. (2000). The elements of a scientific theory of self-deception. Annals of the New York Academy of Sciences, 907, 114–131. doi: 10.1111/j.1749-6632.2000.tb06619.x.CrossRefGoogle Scholar
  39. Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124–1131. doi: 10.1126/science.185.4157.1124.CrossRefGoogle Scholar
  40. Van Doorn, G., Paton, B., Howell, J., & Hohwy, J. (2015). Attenuated self-tickle sensation even under trajectory perturbation. Consciousness and Cognition, 36, 147–153. doi: 10.1016/j.concog.2015.06.016.CrossRefGoogle Scholar
  41. Voss, M., Ingram, J. N., Wolpert, D. M., & Haggard, P. (2008). Mere expectation to move causes attenuation of sensory signals. PLoS ONE, 3(8), e2866. doi: 10.1371/journal.pone.0002866.CrossRefGoogle Scholar
  42. Weinstein, N. D. (1980). Unrealistic optimism about future life events. Journal of Personality and Social Psychology, 39(5), 806–820. doi: 10.1037/0022-3514.39.5.806x.CrossRefGoogle Scholar
  43. Wenger, A., & Fowers, B. J. (2008). Positive illusions in parenting: Every child is above average. Journal of Applied Social Psychology, 38(3), 611–634. doi: 10.1111/j.1559-1816.2007.00319.x.CrossRefGoogle Scholar
  44. Wiese, W. (2014). Jakob Hohwy: The predictive mind. Minds and Machines, 24(2), 233–237. doi: 10.1007/s11023-014-9338-6.CrossRefGoogle Scholar
  45. Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11(18), R729–R732.CrossRefGoogle Scholar
  46. Zehetleitner, M., & Schönbrodt, D. F. (2015). When misrepresentation is successful. In T. Breyer (Ed.), Epistemological dimensions of evolutionary psychology (pp. 197–221). New York, NY: Springer. doi: 10.1007/978-1-4939-1387-9_10.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of PhilosophyJohannes Gutenberg UniversityMainzGermany

Personalised recommendations