Advertisement

Erkenntnis

, Volume 82, Issue 1, pp 87–101 | Cite as

Nonclassical Probability and Convex Hulls

  • Seamus BradleyEmail author
Original Article
  • 216 Downloads

Abstract

It is well known that the convex hull of the classical truth value functions contains all and only the probability functions. Work by Paris and Williams has shown that this also holds for various kinds of nonclassical logics too. This note summarises the formal details of this topic and extends the results slightly.

Keywords

Formal epistemology Probability Logic Nonclassical logic 

Notes

Acknowledgments

Thanks to Catrin Campbell-Moore, Johannes Korbmacher, Hans-Cristoph Kotzsch and Conor Mayo-Wilson for comments. Research supported by the Alexander von Humboldt Foundation.

References

  1. Bell, J. L., & Slomson, A. B. (1969). Models and ultraproducts: An introduction. Amsterdam: North-Holland.Google Scholar
  2. Birkhoff, G., & Maclane, S. (1977). A survey of modern algebra (4th ed.). London: Macmillan.Google Scholar
  3. Blackburn, P., de Rijke, M., & Venema, Y. (2002). Modal logic. Cambridge: Cambridge University Press.Google Scholar
  4. Choquet, G. (1954). Theory of capacities. Annales d’Institute Fourier, 5, 131–295.CrossRefGoogle Scholar
  5. Dunn, J. M., & Hardegree, G. M. (2001). Algebraic methods in philosophical logic. Oxford: Oxford University Press.Google Scholar
  6. Fan, K. (1963). On the Krein–Milman theorem. In V. Klee (Ed.), Convexity, volume 7 of proceedings of symposia in pure mathematics (pp. 211–219).Google Scholar
  7. Gerla, B. (2000). MV-algebras, multiple bets and subjective states. International Journal of Approximate Reasoning, 25, 1–13.CrossRefGoogle Scholar
  8. Horn, A. (1978). Free S5 algebras. Notre Dame Journal of Formal Logic, XIX, 189–191.CrossRefGoogle Scholar
  9. Jaffray, J.-Y. (1989). Coherent bets under partially resolving uncertainty and belief functions. Theory and Decision, 26, 90–105.CrossRefGoogle Scholar
  10. Mundici, D. (1995). Averaging the truth-value in łukasiewicz logic. Studia Logica, 55, 113–127.CrossRefGoogle Scholar
  11. Paris, J. B. (2005). A note on the Dutch book method. In Proceedings of the second international symposium on imprecise probabilities and their applications, 2001 (pp. 301–306).Google Scholar
  12. Rota, G.-C. (1964). On the foundations of combinatorial theory I theory of Möbius functions. Zeitschrift für Wahrscheinlichkeitstheorie un Verwandte Gebiete, 2, 340–368.CrossRefGoogle Scholar
  13. Shafer, G. (1976). A mathematical theory of evidence. Princeton: Princeton University Press.Google Scholar
  14. Stanley, R. P. (2012). Enumerative combinatorics (2nd ed., Vol. 1). Cambridge: Cambridge University Press.Google Scholar
  15. Williams, J. R. G. (2012a). Generalised probabilism: Dutch books and accuracy domination. Journal of Philosophical Logic, 41, 811–840.CrossRefGoogle Scholar
  16. Williams, J. R. G. (2012b). Gradational accuracy and non-classical semantics. Review of Symbolic Logic, 5, 513–537.CrossRefGoogle Scholar
  17. Williams, J. R. G. (2016). Non-classical logic and probability. In A. Hájek, & C. Hitchcock (Eds.), Oxford companion to philosophy of probability. Oxford University Press.Google Scholar
  18. Zhou, C. (2013). Belief functions on distributive lattices. Artificial Intelligence, 201, 1–31.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Munich Centre for Mathematical PhilosophyLudwig-Maximilians-UniversitätMunichGermany

Personalised recommendations