# Are Newtonian Gravitation and Geometrized Newtonian Gravitation Theoretically Equivalent?

- 575 Downloads
- 12 Citations

## Abstract

I argue that a criterion of theoretical equivalence due to Glymour (Noûs 11(3):227–251, 1977) does not capture an important sense in which two theories may be equivalent. I then motivate and state an alternative criterion that does capture the sense of equivalence I have in mind. The principal claim of the paper is that relative to this second criterion, the answer to the question posed in the title is “yes”, at least on one natural understanding of Newtonian gravitation.

## Keywords

Gauge Transformation Gravitational Potential Physical Theory Equivalent Theory Minkowski Spacetime## Notes

### Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. 1331126. Thank you to Steve Awodey, Jeff Barrett, Thomas Barrett, Ben Feintzeig, Sam Fletcher, Clark Glymour, Hans Halvorson, Eleanor Knox, David Malament, John Manchak, Colin McLarty, John Norton, Cailin O’Connor, Oliver Pooley, Sarita Rosenstock, Jeff Schatz, Kyle Stanford, and Noel Swanson for helpful conversations on the topics discussed here, and to audiences at the Southern California Philosophy of Physics Group, the University of Konstanz, and Carnegie Mellon University for comments and discussion. I am particularly grateful to Erik Curiel, Clark Glymour, Hans Halvorson, David Malament, and two anonymous referees for comments on a previous draft, and to Thomas Barrett for detailed discussion and assistance concerning the relationship between categorical equivalence and definitional equivalence.

## References

- Andréka, H., Madaász, J. X., & Németi, I. (2005). Mutual definability does not imply definitional equivalence, a simple example.
*Mathematical Logic Quarterly*,*51*(6), 591–597.CrossRefGoogle Scholar - Andreka, H., & Németi, I. (2014). Definability theory course notes, available at http://www.math-inst.hu/pub/algebraic-logic/DefThNotes0828.pdf. Accessed July 2015.
- Barrett, T., & Halvorson, H. (2015a). Glymour and Quine on theoretical equivalence.
*Journal of Philosophical Logic*. doi: 10.1007/s10992-015-9382-6. - Barrett, T., & Halvorson, H. (2015b). Morita equivalence, arXiv:1506.04675 [math.LO].
- Belot, G. (1998). Understanding electromagnetism.
*The British Journal for the Philosophy of Science*,*49*(4), 531–555.CrossRefGoogle Scholar - Borceux, F. (2008).
*Handbook of Categorical Algebra*(Vol. 1). New York: Cambridge University Press.Google Scholar - Cartan, E. (1923). Sur les variétés à connexion affine, et la théorie de la relativité généralisée (première partie).
*Annales scientifiques de l’École Normale Supérieure*,*40*, 325–412.Google Scholar - Cartan, E. (1924). Sur les variétés à connexion affine, et la théorie de la relativité généralisée (première partie) (suite).
*Annales scientifiques de l’École Normale Supérieure*,*41*, 1–25.Google Scholar - Coffey, K. (2014). Theoretical equivalence as interpretive equivalence.
*The British Journal for the Philosophy of Science, 65*(4), 821–844.CrossRefGoogle Scholar - Craig, W. (1965). Satisfaction for nth order language defined in nth order languages.
*Journal of Symbolic Logic*,*30*, 13–25.CrossRefGoogle Scholar - de Bouvere, K. (1965a). Logical synonymity.
*Indagationes mathematicae*,*27*, 622–629.CrossRefGoogle Scholar - de Bouvere, K. (1965b). Synonymous theories. In J. W. Addison, L. Henkin, & A. Tarski (Eds.),
*The theory of models*(pp. 402–406). Amsterdam: North-Holland Pub. Co.Google Scholar - DiSalle, R. (2008).
*Understanding space-time*. New York: Cambridge University Press.Google Scholar - Friedrichs, K. O. (1927). Eine invariante Formulierun des Newtonschen Gravitationsgesetzes und der Grenzüberganges vom Einsteinschen zum Newtonschen Gesetz.
*Mathematische Annalen*,*98*, 566–575.CrossRefGoogle Scholar - Glymour, C. (1970). Theoretical equivalence and theoretical realism.
*PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association*,*1970*, 275–288.Google Scholar - Glymour, C. (1980).
*Theory and Evidence*. Princeton, NJ: Princeton University Press.Google Scholar - Glymour, C. (2013). Theoretical equivalence and the semantic view of theories.
*Philosophy of Science*,*80*(2), 286–297.CrossRefGoogle Scholar - Gostanian, R., & Hrbacek, K. (1976). On the failure of the weak Beth property.
*Proceedings of the American Mathematical Society*,*58*, 245–249.CrossRefGoogle Scholar - Halvorson, H. (2012). What scientific theories could not be.
*Philosophy of Science*,*79*(2), 183–206.CrossRefGoogle Scholar - Halvorson, H. (2013). The semantic view, if plausible, is syntactic.
*Philosophy of Science*,*80*(3), 475–478.CrossRefGoogle Scholar - Halvorson, H. (2015). Scientific theories. In Humphreys, P. (Ed.),
*The Oxford handbook of the philosophy of science*. Oxford: Oxford University Press. http://philsci-archive.pitt.edu/11347/. - Hodges, W. (1993).
*Model theory*. New York: Cambridge University Press.CrossRefGoogle Scholar - Knox, E. (2011). Newton-Cartan theory and teleparallel gravity: The force of a formulation.
*Studies in History and Philosophy of Modern Physics*,*42*(4), 264–275.CrossRefGoogle Scholar - Knox, E. (2014). Newtonian spacetime structure in light of the equivalence principle.
*The British Journal for Philosophy of Science*,*65*(4), 863–880.CrossRefGoogle Scholar - Leinster, T. (2014).
*Basic category theory*. Cambridge: Cambridge University Press.CrossRefGoogle Scholar - Mac Lane, S. (1998).
*Categories for the working mathematician*(2nd ed.). New York: Springer.Google Scholar - Makowsky, J. A., & Shelah, S. (1979). Theorems of Beth and Craig in abstract model theory. I The abstract setting.
*Transactions of the American Mathematical Society*,*256*, 215–239.Google Scholar - Malament, D. (1995). Is Newtonian cosmology really inconsistent?
*Philosophy of Science*,*62*(4), 489–510.CrossRefGoogle Scholar - Malament, D.B. (2012).
*Topics in the Foundations of General Relativity and Newtonian Gravitation Theory*. Chicago, IL: University of Chicago Press.Google Scholar - Norton, J. (1992). A paradox in Newtonian gravitation theory.
*PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association*,*1992*, 412–420.Google Scholar - Norton, J. (1995). The force of Newtonian cosmology: Acceleration is relative.
*Philosophy of Science*,*62*(4), 511–522.CrossRefGoogle Scholar - Poincaré, H. (1905).
*Science and hypothesis*. New York: Walter Scott Publishing Co.Google Scholar - Reichenbach, H. (1958).
*The philosophy of space and time*. New York, NY: Dover Publications.Google Scholar - Saunders, S. (2013). Rethinking Newton’s Principia.
*Philosophy of Science*,*80*(1), 22–48.CrossRefGoogle Scholar - Sklar, L. (1977).
*Space, time, and spacetime*. Berkeley: University of California Press.Google Scholar - Spirtes, P., & Glymour, C. (1982). Space-time and synonymy.
*Philosophy of Science*,*49*(3), 463–477.CrossRefGoogle Scholar - Trautman, A. (1965). Foundations and current problem of general relativity. In S. Deser & K. W. Ford (Eds.),
*Lectures on general relativity*(pp. 1–248). Englewood Cliffs, NJ: Prentice-Hall.Google Scholar - Weatherall, J.O. (2015a). Categories and the foundations of classical field theories. In E. Landry (Ed.),
*Categories for the working philosopher*, arXiv:1505.07084 [physics.hist-ph]. - Weatherall, J.O. (2015b). Maxwell-Huygens, Newton-Cartan, and Saunders-Knox spacetimes.
*Philosophy of Science*. arXiv:1501.00148 [physics.hist-ph]. - Weatherall, J.O. (2015c). Understanding “gauge”, arXiv:1505.02229 [physics.hist-ph].
- Weatherall, J. O., & Manchak, J. B. (2014). The geometry of conventionality.
*Philosophy of Science*,*81*(2), 233–247.CrossRefGoogle Scholar - Zaret, D. (1980). A limited conventionalist critique of Newtonian space-time.
*Philosophy of Science*,*47*(3), 474–494.CrossRefGoogle Scholar