Advertisement

Erkenntnis

, Volume 81, Issue 5, pp 1011–1029 | Cite as

Curie’s Hazard: From Electromagnetism to Symmetry Violation

  • Bryan W. Roberts
Original Article

Abstract

Pierre Curie claimed that a symmetry of a cause must be found in the produced effects. This paper shows why this principle works in Curie’s example of the electrostatics of central fields, but fails in many others. The failure of Curie’s claim is then shown to be of special empirical interest, in that this failure underpins the experimental discovery of parity violation and of CP violation in the twentieth century.

Keywords

Electromagnetic Field Charge Distribution Central Field Parity Violation Symmetry Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Thanks to John D. Norton for many discussions on this topic, and to Jeremy Butterfield, Elena Castellani, and Jenann Ismael for their helpful comments.

References

  1. Arfken, G. (1985). Mathematical methods for physicists (3rd ed.). San Diego: Academic Press Inc.Google Scholar
  2. Ashtekar, A. (2014). Response to Bryan Roberts: A new perspective on T violation. Studies in History and Philosophy of Modern Physics. doi: 10.1016/j.shpsb.2014.07.001.Google Scholar
  3. Baez, J., & Muniain, J. P. (1994). Gauge fields, knots and gravity. Series on knots and everything (Vol. 4). London: World Scientific Publishing.Google Scholar
  4. Belot, G. (2003). Notes on symmetries. In K. Brading & E. Castellani (Eds.), Symmetries in physics: Philosophical reflections, chapter 24 (pp. 393–412). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  5. Brading, K., & Castellani, E. (2003). Symmetries in physics: Philosophical reflections. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  6. Brading, K., & Castellani, E. (2013). Symmetry and symmetry breaking. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Spring 2013 ed.). http://plato.stanford.edu/archives/spr2013/entries/symmetry-breaking/.
  7. Castellani, E. (2003). On the meaning of symmetry breaking. In K. Brading & E. Castellani (Eds.), Symmetries in physics: Philosophical reflections, chapter 19 (pp. 321–334). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  8. Chalmers, A. F. (1970). Curie’s principle. The British Journal for the Philosophy of Science, 21(2), 133–148.CrossRefGoogle Scholar
  9. Christenson, J. H., Cronin, J. W., Fitch, V. L., & Turlay, R. (1964). Evidence for the \(2\pi {}\) decay of the \(k_{2}^{0}\) meson. Physical Review Letters, 13(4), 138–140.CrossRefGoogle Scholar
  10. Cronin, J. W., & Greenwood, M. S. (1982). CP symmetry violation. Physics Today, 35, 38–44.CrossRefGoogle Scholar
  11. Curie, J., & Curie, P. (1882). Phénomènes électriques des cristaux hèmi‘edres a faces inclinées. Journal de Physique Théorique et Appliquée, 1, 245–251.CrossRefGoogle Scholar
  12. Curie, P. (1894). Sur la symétrie dans les phénomènes physique, symétrie d’un champ électrique et d’un champ magnétique. Journal de Physique Théorique et Appliquée, 3, 393–415.CrossRefGoogle Scholar
  13. Earman, J. (2004). Curie’s principle and spontaneous symmetry breaking. International Studies in the Philosophy of Science, 18(2–3), 173–198.CrossRefGoogle Scholar
  14. Garwin, R. L., Lederman, L. M., & Weinrich, M. (1957). Observations of the failure of conservation of parity and charge conjugation in meson decays: The magnetic moment of the free muon. Physical Review, 104(4), 1415–1417.CrossRefGoogle Scholar
  15. Ismael, J. (1997). Curie’s principle. Synthese, 110(2), 167–190.CrossRefGoogle Scholar
  16. Katzir, s. (2006). The beginnings of piezoelectricity, vol. 246 of Boston studies in philosophy of science. Dordrecht: Springer.Google Scholar
  17. Lee, T. D., & Yang, C.-N. (1956). Question of parity conservation in weak interactions. Physical Review, 104(1), 254–258.CrossRefGoogle Scholar
  18. Malament, D. B. (2012). Topics in the foundations of general relativity and Newtonian gravitation theory. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  19. Mittelstaedt, P., & Weingartner, P. A. (2005). Laws of nature. Berlin: Springer.Google Scholar
  20. Norton, J. D. (2014). Curie’s truism. Unpublished Manuscript, http://philsci-archive.pitt.edu/10926/.
  21. Roberts, B. W. (2013). The simple failure of Curie’s principle. Philosophy of Science, 80(4), 579–592.CrossRefGoogle Scholar
  22. Roberts, B. W. (2014). Three merry roads to \(T\)-violation. Studies in History and Philosophy of Modern Physics. doi: 10.1016/j.shpsb.2014.08.003.Google Scholar
  23. Wald, R. M. (1984). General relativity. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  24. Wu, C. S., Ambler, E., Hayward, R. W., Hoppes, D. D., & Hudson, R. P. (1957). Experimental test of parity conservation in beta decay. Physical Review, 104(4), 1413–1415.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Philosophy, Logic and Scientific Method, Centre for Philosophy of Natural and Social SciencesLondon School of Economics and Political ScienceLondonUK

Personalised recommendations