Erkenntnis

, Volume 80, Issue 5, pp 1031–1053

Objective Computation Versus Subjective Computation

Original Article
  • 164 Downloads

Abstract

The question ‘What is computation?’ might seem a trivial one to many, but this is far from being in consensus in philosophy of mind, cognitive science and even in physics. The lack of consensus leads to some interesting, yet contentious, claims, such as that cognition or even the universe is computational. Some have argued, though, that computation is a subjective phenomenon: whether or not a physical system is computational, and if so, which computation it performs, is entirely a matter of an observer choosing to view it as such. According to one view, which we dub bold anti-realist pancomputationalism, every physical object (can be said to) computes every computer program. According to another, more modest view, some computational systems can be ascribed multiple computational descriptions. We argue that the first view is misguided, and that the second view need not entail observer-relativity of computation. At least to a large extent, computation is an objective phenomenon. Construed as a form of information processing, we argue that information-processing considerations determine what type of computation takes place in physical systems.

References

  1. Adriaans, P., & van Emde Boas, P. (2011). Computation, information, and the arrow of time. In S. B. Cooper & A. Sorbi (Eds.), Computability in context (pp. 1–17). Imperial College Press. http://www.worldscientific.com/doi/abs/10.1142/9781848162778_0001.
  2. Bishop, J. M. (2009). A cognitive computation fallacy? Cognition, computations and panpsychism. Cognitive Computation, 1(3), 221–233. doi:10.1007/s12559-009-9019-6.CrossRefGoogle Scholar
  3. Block, N. (2002). Searle’s arguments against cognitive science. In J. Preston & M. Bishop (Eds.), Views into the Chinese room: New essays on Searle and artificial intelligence (pp. 70–79). Oxford: Clarendon Press.Google Scholar
  4. Bohm, D. (2006). The special theory of relativity. London: Routledge.Google Scholar
  5. Bokulich, P. (2013). The physics and metaphysics of computation and cognition. In V. C. Müller (Ed.), Philosophy and theory of artificial intelligence (Vol. 5, pp. 29–41). Berlin: Springer. http://www.springerlink.com/index/10.1007/978-3-642-31674-6_3.
  6. Brassard, G. (2003). Quantum communication complexity. Foundations of Physics, 33(11), 1593–1616. doi:10.1023/A:1026009100467.CrossRefGoogle Scholar
  7. Brown, C. (2012). Combinatorial-state automata and models of computation. Journal of Cognitive Science, 13(1), 51–73.CrossRefGoogle Scholar
  8. Chalmers, D. J. (1996). Does a rock implement every finite-state automaton? Synthese, 108(3), 309–333. doi:10.1007/BF00413692.CrossRefGoogle Scholar
  9. Chrisley, R. L. (1994). Why everything doesn’t realize every computation. Minds and Machines, 4(4), 403–420. doi:10.1007/BF00974167.CrossRefGoogle Scholar
  10. Copeland, B. J. (1996). What is computation? Synthese, 108(3), 335–359. doi:10.1007/BF00413693.CrossRefGoogle Scholar
  11. Corning, P. A. (2001). “Control information”: The missing element in Norbert Wiener’s cybernetic paradigm? Kybernetes, 30(9/10), 1272–1288. doi:10.1108/EUM0000000006552.CrossRefGoogle Scholar
  12. Dennett, D. C. (1989). The intentional stance. Cambridge: MIT Press.Google Scholar
  13. Dewhurst, J. (2014). Rejecting the received view: Representation, computation, and observer-relativity. In The 7th AISB symposium on computing and philosophy: Is computation observer-relative? University of London.Google Scholar
  14. Dietrich, E. (1989). Semantics and the computational paradigm in cognitive psychology. Synthese, 79(1), 119–141. doi:10.1007/BF00873258.CrossRefGoogle Scholar
  15. Dijkstra, E. W. (1972). Structured programming. In O. J. Dahl, E. W. Dijkstra, & C. A. R. Hoare (Eds.), (pp. 1–82). London, UK: Academic Press Ltd. http://dl.acm.org/citation.cfm?id=1243380.1243381.
  16. Dodig-Crnkovic, G., & Müller, V. C. (2011). A dialogue concerning two world systems: Info-computational vs. mechanistic. In G. Dodig-Crnkovic & M. Burgin (Eds.), Information and computation (pp. 149–184). World Scientific.Google Scholar
  17. Floridi, L. (2011). The philosophy of information. Oxford: Oxford University Press.CrossRefGoogle Scholar
  18. Fresco, N., & Staines, P. J. (2014). A revised attack on computational ontology. Minds and Machines, 24(1), 101–122. doi:10.1007/s11023-013-9327-1.CrossRefGoogle Scholar
  19. Fresco, N., & Wolf, M. J. (unpublished-a). Information processing and the structuring of data.Google Scholar
  20. Fresco, N., & Wolf, M. J. (unpublished-b). Objective computational descriptions and kolmogorov complexity.Google Scholar
  21. Fresco, N., & Wolf, M. J. (2014). The instructional information processing account of digital computation. Synthese, 191(7), 1469–1492. doi:10.1007/s11229-013-0338-5.CrossRefGoogle Scholar
  22. Hamblin, C. L. (1987). Imperatives. New York, NY: Basil Blackwell.Google Scholar
  23. Hänggi, E., & Wehner, S. (2013). A violation of the uncertainty principle implies a violation of the second law of thermodynamics. Nature Communications, 4, 1670. doi:10.1038/ncomms2665.CrossRefGoogle Scholar
  24. Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2001). Introduction to automata theory, languages, and computation. Boston: Addison-Wesley.Google Scholar
  25. Landauer, R. (1961). Irreversibility and heat generation in the computing process. IBM Journal of Research and Development, 5(3), 183–191. doi:10.1147/rd.53.0183.CrossRefGoogle Scholar
  26. Li, M., & Vitanyi, P. M. B. (1992). Mathematical theory of thermodynamics of computation. Amsterdam: Centre for Mathematics and Computer Science.Google Scholar
  27. Mackie, D. (1997). The individuation of actions. The Philosophical Quarterly, 47(186), 38–54. doi:10.1111/1467-9213.00045.CrossRefGoogle Scholar
  28. Mossel, B. (2001). The individuation of actions. Australasian Journal of Philosophy, 79(2), 258–278. doi:10.1080/713659226.CrossRefGoogle Scholar
  29. Piccinini, G. (2007). Computing mechanisms. Philosophy of Science, 74(4), 501–526. doi:10.1086/522851.CrossRefGoogle Scholar
  30. Piccinini, G. (2012). Computation in physical systems. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy. http://plato.stanford.edu/archives/fall2012/entries/computation-physicalsystems/.
  31. Planck, M. (1914). The theory of heat radiation. New York: Maple Press, P. Blakiston’s Son & Co.Google Scholar
  32. Putnam, H. (1988). Representation and reality. Cambridge: The MIT Press.Google Scholar
  33. Scheutz, M. (1999). When physical systems realize functions. Minds and Machines, 9(2), 161–196. doi:10.1023/A:1008364332419.CrossRefGoogle Scholar
  34. Scheutz, M. (2012). What it is not to implement a computation: A critical analysis of Chalmers’ notion of implementation. Journal of Cognitive Science, 13(1), 75–106.CrossRefGoogle Scholar
  35. Searle, J. R. (1990). Is the brain a digital computer? Proceedings and Addresses of the American Philosophical Association, 64, 21–37.CrossRefGoogle Scholar
  36. Shagrir, O. (2001). Content, computation and externalism. Mind, 110(438), 369–400. doi:10.1093/mind/110.438.369.CrossRefGoogle Scholar
  37. Shour, R. (2008). Isotropy, entropy, and energy scaling. eprint arXiv:0805.1715.Google Scholar
  38. Sprevak, M. (2010). Computation, individuation, and the received view on representation. Studies in History and Philosophy of Science Part A, 41(3), 260–270. doi:10.1016/j.shpsa.2010.07.008.CrossRefGoogle Scholar
  39. Turing, A. M. (1936). On Computable numbers, with an application to the entscheidungsproblem. In Proceedings of the london mathematical society, s242(1), 230–265. doi:10.1112/plms/s2-42.1.230.
  40. Vedral, V. (2010). Decoding reality: The universe as quantum information. Oxford: Oxford University Press.Google Scholar
  41. Verlinde, E. (2011). On the origin of gravity and the laws of Newton. Journal of High Energy Physics, 2011(4). doi:10.1007/JHEP04(2011)029.

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Sidney M. Edelstein Centre for History and Philosophy of Science, Technology and MedicineThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations