Advertisement

Erkenntnis

, Volume 79, Supplement 8, pp 1547–1561 | Cite as

Modeling Diachronic Changes in Structuralism and in Conceptual Spaces

  • Frank Zenker
  • Peter Gärdenfors
Original Article

Abstract

Our aim in this article is to show how the theory of conceptual spaces can be useful in describing diachronic changes to conceptual frameworks, and thus useful in understanding conceptual change in the empirical sciences. We also compare the conceptual space approach to Moulines’s typology of intertheoretical relations in the structuralist tradition. Unlike structuralist reconstructions, those based on conceptual spaces yield a natural way of modeling the changes of a conceptual framework, including noncumulative changes, by tracing the changes to the dimensions that reconstitute a conceptual framework. As a consequence, the incommensurability of empirical theories need not be viewed as a matter of conceptual representation.

Keywords

Conceptual Framework Conceptual Change Conceptual Space Empirical Theory Invariance Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank two anonymous reviewers for this journal, the participants of Perspectives on Structuralism, Feb 16–18, 2012, at the Center for Advanced Studies, LMU Munich, and Graciana Petersen for comments that improved our manuscript, as well as Heather Ogston for language editing. Both authors acknowledge funding from the Swedish Research Council (VR).

References

  1. Balzer, W., & Moulines, C. U. (Eds.). (1996). Structuralist theory of science: Focal issues, new results. Berlin: deGruyter.Google Scholar
  2. Balzer, W., Moulines, C. U., & Sneed, J. D. (1987). An architectonic for science: The structuralist program. Dordrecht: Reidel.CrossRefGoogle Scholar
  3. Balzer, W., Moulines, C. U., & Sneed, J. D. (Eds.). (2000). Structuralist knowledge representation: Paradigmatic examples. Amsterdam: Rodopi.Google Scholar
  4. Balzer, W., Pearce, D. A., & Schmidt, H.-J. (1984). Reduction in science: Structure, examples, philosophical problems. Dordrecht: Reidel.CrossRefGoogle Scholar
  5. Chang, H. (2004). Inventing temperature: Measurement and scientific progress. New York, NY: Oxford University Press.CrossRefGoogle Scholar
  6. de Martins, R. (1981). The origin of dimensional analysis. Journal of the Franklin Institute, 311(5), 331–337.CrossRefGoogle Scholar
  7. Gärdenfors, P. (2000). Conceptual spaces: The geometry of thought. Cambridge, Mass.: MIT Press.Google Scholar
  8. Gärdenfors, P., & Zenker, F. (2011). Using conceptual spaces to model the dynamics of empirical theories. In E. J. Olsson & S. Enqvist (Eds.), Belief revision meets philosophy of science (pp. 137–153). Berlin: Springer.Google Scholar
  9. Gärdenfors, P., & Zenker, F. (2013). Theory change as dimensional change: Conceptual spaces applied to the dynamics of empirical theories. Synthese, 190(6), 1039–1058.CrossRefGoogle Scholar
  10. Irzik, G., & Grünberg, T. (1995). Carnap and Kuhn: Arch enemies or close allies? The British Journal for the Philosophy of Science, 46(3), 285–307.CrossRefGoogle Scholar
  11. Johansson, I. (2011). The mole is not an ordinary measurement unit. Accreditation and Quality Assurance, 16, 467–470.CrossRefGoogle Scholar
  12. Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971). Foundations of measurement, volumes I–III. New York, NY: Academic Press.Google Scholar
  13. Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1989). Foundations of measurement, volumes I–III. New York, NY: Academic Press.Google Scholar
  14. Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1990). Foundations of measurement, volumes I–III. New York, NY: Academic Press.Google Scholar
  15. Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press.Google Scholar
  16. Kuhn, T. S. (1970). The structure of scientific revolutions. Chicago: University of Chicago Press.Google Scholar
  17. Macagno, E. O. (1971). Historic-critical review of dimensional analysis. Journal of the Franklin Institute, 292(6), 391–402.CrossRefGoogle Scholar
  18. Maddox, W. T. (1992). Perceptual and decisional separability. In G. F. Ashby (Ed.), Multidimensional models of perception and cognition (pp. 147–180). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  19. Melera, R. D. (1992). The concept of perceptual similarity: From psychophysics to cognitive psychology. In D. Algom (Ed.), Psychophysical approaches to cognition (pp. 303–388). Amsterdam: Elsevier.CrossRefGoogle Scholar
  20. Mormann, T. (1996). Categorical structuralism. In Balzer, W., & Moulines, C. U. (Eds), Structuralist theory of science: Focal issues, new results (pp. 265–286). Berlin: deGruyter.Google Scholar
  21. Moulines, C. U. (2002). Introduction: Structuralism as a program for modeling theoretical science. Synthese, 130, 1–11.CrossRefGoogle Scholar
  22. Moulines, C. U. (2013). Intertheoretical relations and the dynamics of science. Erkenntnis. doi: 10.1007/s10670-013-9580-y
  23. Petersen, G., & Zenker, F. (2013). From Euler to Navier stokes: The changing conceptual framework of 19th century fluid dynamics. Submitted manuscript (available upon request).Google Scholar
  24. Rayleigh, L. (1915). The principle of similitude. Nature, 95, 66–68.CrossRefGoogle Scholar
  25. Rehg, W. (2009). Cogent science in context: The science wars, argumentation theory, and Habermas. Cambridge, MA: The MIT Press.Google Scholar
  26. Reisch, G. A. (1991). Did Kuhn kill logical empiricism? Philosophy of Science, 58(2), 264–277.CrossRefGoogle Scholar
  27. Roche, J. (1998). The mathematics of measurement: A critical history. London: The Athlone Press.Google Scholar
  28. Schilpp, P. A. (Ed.). (1963). The philosophy of Rudolf Carnap. La Salle, Ill.: Open Court.Google Scholar
  29. Sneed, J. D. (1971). The logical structure of mathematical physics. Dordrecht: Reidel.CrossRefGoogle Scholar
  30. Stegmüller, W. (1976). The structuralist view of theories. Berlin: Springer.Google Scholar
  31. Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103, 677–680.CrossRefGoogle Scholar
  32. Strömdahl, H., Tullberga, A., & Lybecka, L. (1994). The qualitatively different conceptions of 1 mol. International Journal of Science Education, 16(1), 17–26.CrossRefGoogle Scholar
  33. Suppes, P. (2002). Representation and invariance of scientific structures. Stanford, CA: CSLI Publications.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Philosophy and Cognitive ScienceLund UniversityLundSweden

Personalised recommendations