Erkenntnis

, Volume 77, Issue 3, pp 317–333 | Cite as

Always or Never: Two Approaches to Ceteris Paribus

Original Article

Abstract

The Scientific Revolution spawned not just one methodology, but two. We have emphasized Bacon’s inductivism at the expense of Galileo’s more abstract, sophisticated method of successive approximation, and so have failed to appreciate Galileo’s contribution to the ceteris paribus problem in philosophy of science. My purpose here is to help redress this imbalance. I first briefly review the old unsolved problems, and then point out the Baconian basis of ceteris paribus, as this clause is conventionally understood, and its history from Aristotle to twentieth century Positivism. Then I explore Galileo’s method of dealing with unwanted impediments, and the more general problem of ‘accidents.’ I trace his methodology back to Archimedes and forward through the economic theories of Adam Smith (18th century), J. S. Mill (19th) and Milton Friedman (20th). Finally, I point out ways in which I think Galileo’s scientific method sheds light on, and provides a partial solution to, the ceteris paribus problem.

References

  1. Aristotle (1941). Metaphysics. In R. McKeon (Ed.), The basic works of Aristotle (pp. 681–926), (W. D. Ross, Trans.). New York: Random House.Google Scholar
  2. Asimov, I. (1962). Life and energy. London: Dennis Dobson.Google Scholar
  3. Ayer, A. J. (1956). What is a law of nature? Revue Internationale de Philosophie, 10, 144–165.Google Scholar
  4. Bacon, F. [1620] (1960). The new organon, In F. H. Anderson (Ed.). Indianapolis: Bobbs-Merrill.Google Scholar
  5. Barr, W. F. (1974). A pragmatic analysis of idealizations in physics. Philosophy of Science, 41, 48–64.CrossRefGoogle Scholar
  6. Blake, R. M. (1960). Isaac Newton and the hypothetical-deductive method. In E. H. Madden (Ed.), Theories of scientific method: The Renaissance through the nineteenth century (pp. 119–143). Seattle: University of Washington Press.Google Scholar
  7. Bonar, J. (1932). Catalogue of the library of Adam Smith. New York: Macmillan.Google Scholar
  8. Bravo, E. N. (1995). Galileo’s revolution: The use of idealizational laws in physics. Boston Studies in the Philosophy of Science, 172, 109–128.CrossRefGoogle Scholar
  9. Butterfield, H. (1958). The origins of modern science. New York: Macmillan.Google Scholar
  10. Cartwright, N. (1980). The truth doesn’t explain much. American Philosophical Quarterly, 17, 159–163.Google Scholar
  11. Cartwright, N. (1983). How the laws of physics lie. Oxford: Clarendon Press.CrossRefGoogle Scholar
  12. Cartwright, N. (1989). Nature’s capacities and their measurement. Oxford: Clarendon Press.Google Scholar
  13. Cartwright, N. (2002). In favor of laws that are not ceteris paribus after all. Erkenntnis, 57, 425–439.CrossRefGoogle Scholar
  14. Cassirer, E. (1942). Galileo: A new science and a new spirit. The American Scholar, 12, 5–19.Google Scholar
  15. Cassirer, E. (1943). Newton and Leibniz. Philosophical Review, 52, 366–391.Google Scholar
  16. Caws, P. (1967). Scientific method. In P. Edwards (Ed.), Encyclopedia of philosophy (vol. 7, pp. 339–343). New York: Macmillan.Google Scholar
  17. Cohen, I. B. (1960). The birth of a new physics. Garden City: Anchor/Doubleday.Google Scholar
  18. Cohen, I. B. (1980). The Newtonian revolution. Cambridge: Cambridge University Press.Google Scholar
  19. Cohen, I. B. (1994). Newton and the social sciences, with special reference to economics, or, the case of the missing paradigm. In P. Mirowski (Ed.), Natural images in economic thought (pp. 55–90). Cambridge: Cambridge University Press.Google Scholar
  20. Drake, S. (1967). Galileo Galilei. In P. Edwards (Ed.) Encyclopedia of philosophy (vol. 3, pp. 262–267). New York: Macmillan.Google Scholar
  21. Drake, S. (1970). Early science and the printed book: The spread of science beyond the universities. Renaissance and Reformation, 6, 43–52.Google Scholar
  22. Dubarle, D. (1967). Galileo’s methodology of natural science. In E. McMullin (Ed.), Galileo: Man of science (pp. 295–314). New York: Basic Books.Google Scholar
  23. Earman, J., Glymour, C., & Mitchell, S. (2002). Ceteris paribus lost. Erkenntnis, 57, 281–301.CrossRefGoogle Scholar
  24. Einstein, A. (2000). The expanded quotable Einstein, In A. Calaprice (Ed.). Princeton: Princeton University Press.Google Scholar
  25. Finocchiaro, M. (1980). Galileo and the art of reasoning. Dordrecht: D. Reidel.CrossRefGoogle Scholar
  26. Finocchiaro, M. (2008). Review of Massimo Bucciantini’s Galileo e Keplero. Isis, 99, 833–834.CrossRefGoogle Scholar
  27. Friedman, M. (1953). The methodology of positive economics. In Essays in positive economics (pp. 3–43). Chicago: University of Chicago Press.Google Scholar
  28. Funkenstein, A. (2005). The revival of Aristotle’s nature. Idealization XII: Poznań Studies in the Philosophy of the Sciences and the Humanities, 86, 47–58.Google Scholar
  29. Galileo, G. [1590, c.1593] (1960). On motion and on mechanics (I. E. Drabkin & S. Drake, Trans.). Madison: University of Wisconsin.Google Scholar
  30. Galileo, G. [1623] (1957). The assayer. In Discoveries and opinions of Galileo (S. Drake, Trans.). New York: Doubleday.Google Scholar
  31. Galileo, G. [1634] (1967). Dialogue concerning the two chief world systems, Ptolemaic and Copernican (S. Drake, Trans.). Berkeley: University of California.Google Scholar
  32. Galileo, G. [1638] (1974). Two new sciences (S. Drake, Trans.). Madison: University of Wisconsin.Google Scholar
  33. Glymour, C. (2002). A semantics and methodology for ceteris paribus hypotheses. Erkenntnis, 57, 395–405.CrossRefGoogle Scholar
  34. Gould, S. J. (1988). On replacing the idea of progress with an operational notion of directionality. In M. H. Nitecki (Ed.), Evolutionary progress. Chicago: University of Chicago Press.Google Scholar
  35. Gould, S. J. (2000). A sly dullard named Darwin: Recognizing the multiple facets of genius. In The lying stones of Marrakech (pp. 169–182). New York: Harmony Books.Google Scholar
  36. Grendler, P. F. (2002). The universities of the Italian Renaissance. Baltimore: Johns Hopkins University Press.Google Scholar
  37. Hall, A. R. (1954). The scientific revolution 1500–1800: The formation of the modern scientific attitude. London: Longmans, Green.Google Scholar
  38. Hankins, T. L. (2006). A ‘large and graceful sinuosity’: John Herschel’s graphical method. Isis, 97, 605–633.CrossRefGoogle Scholar
  39. Harper, W., & Smith, G. E. (1995). Newton’s new way of inquiry. In J. Leplin (Ed.), The creation of ideas in physics (pp. 113–166). Dordrecht: Kluwer Academic Publishers.Google Scholar
  40. Hausman, D. (1985). Philosophy and economic methodology. In P. D. Asquith & P. Kitcher (Eds.) PSA 1984 (vol. 2, pp. 231–249). East Lansing, Michigan: Philosophy of Science Association.Google Scholar
  41. Hempel, C. G. (1965). Aspects of scientific explanation. New York: Free Press.Google Scholar
  42. Hempel, C. G. [1988] (2000). Provisoes: A problem concerning the inferential function of scientific theories. In R. Jeffrey (Ed.), Selected philosophical essays (pp. 229–249). Cambridge: Cambridge University Press.Google Scholar
  43. Herschel, J. F. W. (1830). A preliminary discourse on the study of natural philosophy. London: Longman, Rees, Orme, Brown, and Green.Google Scholar
  44. Husserl, E. [1954] (1970). The crisis of European sciences and transcendental phenomenology. Evanston: Northwestern University Press.Google Scholar
  45. Jacob, F. (1988). The statue within (F. Philip, Trans.). New York: Basic Books.Google Scholar
  46. Joseph, G. (1980). The many sciences and the one world. Journal of Philosophy, 77, 773–791.CrossRefGoogle Scholar
  47. Kaufmann, F. (1944). Methodology of the social sciences. London: Oxford University Press.Google Scholar
  48. Koertge, N. (1977). Galileo and the problem of accidents. Journal of the History of Ideas, 38, 389–408.CrossRefGoogle Scholar
  49. Kolak, D. (1993). The metaphysics and metapsychology of personal identity. American Philosophical Quarterly, 30, 39–50.Google Scholar
  50. Koyre, A. (1943). Galileo and the scientific revolution of the seventeenth century. Philosophical Review, 52, 333–348.CrossRefGoogle Scholar
  51. Kuhn, T. (1970). The structure of scientific revolutions (2nd ed.). Chicago: University of Chicago Press.Google Scholar
  52. Laudan, L. (1968). Theories of scientific method from Plato to Mach: A bibliographical review. History of Science: An Annual Review of Literature, Research and Teaching, 7, 1–63.Google Scholar
  53. Laymon, R. (1989). Applying idealized scientific theories to engineering. Synthese, 81, 353–371.CrossRefGoogle Scholar
  54. Lewin, K. (1935). A dynamic theory of personality: Selected papers (D. K. Adams & K. E. Zener, Trans.). New York: McGraw-Hill.Google Scholar
  55. Lipton, P. (1999). All else being equal. Philosophy, 74, 1–14.CrossRefGoogle Scholar
  56. Losee, J. (1972). Historical introduction to the philosophy of science. Oxford: Oxford University Press.Google Scholar
  57. Marshall, A. (1948). Principles of economics (8th ed.). New York: Macmillan.Google Scholar
  58. McMullin, E. (Ed.). (1967). Galileo: Man of science (Introduction, pp. 3–51). New York: Basic Books.Google Scholar
  59. McMullin, E. (Ed.). (1978). The conception of science in Galileo’s work. In R. E. Butts & J. C. Pitt (Eds.), New perspectives on Galileo (pp. 209–257). Dordrecht: D. Reidel.Google Scholar
  60. Mill, J. S. [1843] (1973–1974). A system of logic ratiocinative and inductive, vols. 7–8 of Collected works of John Stuart Mill. Toronto: University of Toronto and Routledge & Kegan Paul.Google Scholar
  61. Mill, J. S. [1848] (1965). Principles of political economy, Collected works, vols. 2–3.Google Scholar
  62. Morrison, M. (2005). Approximating the real: The role of idealizations in physical theory. Poznan Studies in the Philosophy of the Sciences and the Humanities, 86, 145–172.Google Scholar
  63. Mott, P. (1992). Fodor and ceteris paribus laws. Mind, 101, 335–346.CrossRefGoogle Scholar
  64. Nagel, E. (1961). The structure of science: Problems in the logic of scientific explanation. New York: Harcourt, Brace & World.Google Scholar
  65. Nagel, E. (1963). Assumptions in economic theory. American Economic Review: Papers and Proceedings, 53, 211–219.Google Scholar
  66. Newton, I. [1687, 1726] (1995). The principia (A. Motte, Trans.). Amherst, New York: Prometheus Books.Google Scholar
  67. Nowak, L. (1972). Laws of science, theories, measurement: (Comments on Ernest Nagel’s The structure of science). Philosophy of Science, 39, 533–548.CrossRefGoogle Scholar
  68. Nowak, L. (1992). The idealizational approach to science: A survey. In J. Brzezinski & L. Nowak (Eds.), Idealization III: Approximation and truth (pp. 9–63). Amsterdam: Rodolphi.Google Scholar
  69. Oddie, G. (1996). Truthlikeness. In D. M. Borchert (Ed.), Encyclopedia of philosophy: Supplement (pp. 574–576). New York: Simon & Schuster Macmillan.Google Scholar
  70. Olschki, L. (1942). The scientific personality of Galileo. Bulletin of the History of Medicine, 12, 248–273.Google Scholar
  71. Osler, M. (1970). John Locke and the changing ideal of scientific knowledge. Journal of the History of Ideas, 31, 3–16.CrossRefGoogle Scholar
  72. Pemberton, J. (2005). Why idealized models in economics have limited use. In M. R. Jones & N. Cartwright (Eds.), Idealization XII: Correcting the model, idealization and abstraction in the sciences (pp. 35–46). Amsterdam: Rodolphi.Google Scholar
  73. Persky, J. P. (1990). Ceteris paribus. Journal of Economic Perspectives, 4, 187–193.CrossRefGoogle Scholar
  74. Pietroski, P. & Rey, G. When other things aren’t equal: Saving ceteris paribus laws from vacuity. British Journal for the Philosophy of Science, 46, 81–110.Google Scholar
  75. Pitt, J. (1992). Galileo, human knowledge, and the book of nature: Method replaces metaphysics. Dordrecht: Kluwer.Google Scholar
  76. Popper, K. R. (1963). Conjectures and refutations: The growth of scientific knowledge. London: Routledge and Kegan Paul.Google Scholar
  77. Quinton, A. (1980). Francis Bacon. New York: Hill and Wang.Google Scholar
  78. Ross, I. S. (1995). The life of Adam Smith. Oxford: Clarendon Press.CrossRefGoogle Scholar
  79. Schliesser, E. (2005). Some principles of Adam Smith’s Newtonian methods in The wealth of nations. Research in the History of Economic Thought and Methodology, 23-A, 33–74.CrossRefGoogle Scholar
  80. Scriven, M. (1961). The key property of physical laws—Inaccuracy. In B. Feigl & G. Maxwell (Eds.), Current issues in the philosophy of science (pp. 97–101). New York: Holt, Rinehart.Google Scholar
  81. Shapere, D. (1974). Galileo: A philosophical study. Chicago: University of Chicago.Google Scholar
  82. Shea, W. R. (1977). Galileo’s intellectual revolution: middle period, 1610–1632. New York: Neale Watson.Google Scholar
  83. Smith, A. [1776] (1981). In R. H. Campbell & A. S. Skinner (Eds.), An inquiry into the nature and causes of the wealth of nations (2 vols). Indianapolis: Liberty Fund.Google Scholar
  84. Smith, A. [1795] (1982). The principles which lead and direct philosophical inquiries; Illustrated by the history of astronomy. In D. D. Raphael & A. S. Skinner (Eds.), Essays on philosophical subjects (pp. 33–105). Indianapolis: Liberty Fund.Google Scholar
  85. Smith, S. (2000). Violated laws, ceteris paribus clauses, and capacities. Synthese, 130, 235–264.CrossRefGoogle Scholar
  86. Strong, E. W. (1936). Procedures and metaphysics. Berkeley: University of California Press.Google Scholar
  87. Toulmin, S. (1961). Foresight and understanding: An enquiry into the aims of science. Bloomington: Indiana University Press.Google Scholar
  88. Wallace, W. (1974). Galileo and reasoning ex suppositione: The methodology of the two new sciences. Boston Studies in the Philosophy of Science, 32, 79–104.CrossRefGoogle Scholar
  89. Wallis, C. (1994). Representation and the imperfect ideal. Philosophy of Science, 61, 407–428.CrossRefGoogle Scholar
  90. Weisberg, M. (2007). Three kinds of idealization. Journal of Philosophy, 104, 639–659.Google Scholar
  91. Westfall, R. S. (1968). Newton and order. In P. Kuntz (Ed.), The concept of order (pp. 77–88). Seattle: University of Washington.Google Scholar
  92. Wilber, K. (Ed.). (1985). Quantum questions: Mystical writings of the world’s great physicists. Boston: Shambhala.Google Scholar
  93. Woodward, J. (2002). There is no such thing as a ceteris paribus law. Erkenntnis, 57, 303–328.CrossRefGoogle Scholar
  94. Yeo, R. (1989). Reviewing Herschel’s Discourse. Studies in History and Philosophy of Science, 20, 541–552.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Blue BellUSA

Personalised recommendations