Advertisement

Erkenntnis

, Volume 75, Issue 3, pp 349–376 | Cite as

Science as (Historical) Narrative

  • M. Norton Wise
Article

Abstract

The traditional mode of explanation in physics via deduction from partial differential equations is contrasted here with explanation via simulations. I argue that the different technologies employed constitute different languages, which support different sorts of narratives. The narratives that accompany simulations and articulate their meaning are typically historical or natural historical in kind. They explain complex phenomena by growing them rather than by referring them to general laws. Examples of such growth simulations and growth narratives come from the evolution of wave functions in quantum chaos, snowflake formation, and Etruscan genetics. The examples suggest a few concluding remarks on historical explanation.

Keywords

Cellular Automaton Historical Narrative Quantum Chaos Schroedinger Equation Physical Intuition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

For extensive discussions I thank Mary Morgan, Lorraine Daston, and my long-time collaborator and muse Elaine Wise, also Guido Barbujani, Krishna Veeramah, Philip Kitcher, Manfred Laubichler, and an especially probing anonymous referee. An earlier version benefited from comments of participants in the conference on Historical Epistemology at the Max Planck Institute for History of Science, 24–26 July 2008.

References

  1. Alexander, A. R. (2002). Geometrical landscapes: The Voyages of discovery and the transformation of mathematical practice. Stanford, CA: Stanford University Press.Google Scholar
  2. Beatty, J. (1995). The evolutionary contingency thesis. In: G. Wolters and J. G. Lennox, in collaboration with P. McLaughlin (Eds.), Concepts, theories, and rationality in the biological sciences (pp. 45–81). Konstanz: Universitätsverlag Konstanz; Pittsburgh: University Pittsburgh Press.Google Scholar
  3. Beatty, J. (2002). The historicity of nature? Everything that is might have been different? In R. E. Auxier & L. E. Hahn (Eds.), The philosophy of Marjorie Greene (pp. 397–416). Chicago: Open Court.Google Scholar
  4. Beatty, J. (2006). Replaying life’s tape. The Journal of Philosophy, 103, 336–362.Google Scholar
  5. Beer, G. (1983). Darwin’s plots: Evolutionary narratives in Darwin, George Eliot, and Nineteenth Century Fiction. London: Routledge.Google Scholar
  6. Belle, E. M. S., Ramakrishnan, U., Mountain, J. L., & Barbujani, G. (2006). Serial coalescent simulations suggest a weak genealogical relationship between Etruscans and modern Tuscans [Electronic Version]. Proceedings of the National Academy of Sciences, 103, 8012–8017. doi: 10.1073/pnas.0509718103.CrossRefGoogle Scholar
  7. Bentley, W. A., & Humphreys, W. J. (1931). Snow crystals. New York: McGraw-Hill.Google Scholar
  8. Berman, R. (2007). Fiction sets you free: Literature, liberty, and western culture. Iowa City: University of Iowa Press.Google Scholar
  9. Carr, D. (1986). Time, narrative, and history. Bloomington: Indiana University Press.Google Scholar
  10. Carr, D. (2008). Narrative explanation and its malcontents. History and Theory, 47, 19–30.CrossRefGoogle Scholar
  11. Costelloe, T (2003, winter). Giambattista Vico. In: E. N. Zalta (Ed.), The stanford encyclopedia of philosophy. Retrieved 3 April 2011 from http://plato.stanford.edu/archives/win2003/entries/vico/. I cite Costelloe’s analysis of Giambattista Vico, De antiquissima Italorum sapientia ex linguae originibus eruenda librir tres (1710), 52.
  12. Courant, R., & Hilbert, D. (1953). Methods of mathematical physics, vol 2. Original published 1924–1928. Berlin: Springer. English edition, revised, London: Interscience.Google Scholar
  13. Creager, A. N. H., Lunbeck, E., & Wise, M. N. (Eds.). (2007). Science without laws: Model systems, cases, exemplary narratives. Durham, N.C.: Duke University Press.Google Scholar
  14. Danto, A. (1985). Narration and knowledge, including the integral text of Analytical Philosophy of History (1964). New York: Columbia University Press.Google Scholar
  15. Dalmédico, A. D. (2004). Chaos, disorder, and mixing: A new ‘Fin-de-Siècle’. In M. N. Wise (Ed.), Growing explanations: Historical perspectives on recent science (pp. 67–94). Durham: Duke University Press.Google Scholar
  16. Daston, L., & Galison, P. (2007). Objectivity. New York: Zone Books.Google Scholar
  17. Descartes, R. (1965). Discourse on method, optics, geometry, and meteorology [1637], (P. J. Olscamp, Trans.). Indianapolis: Bobbs-Merrill.Google Scholar
  18. Dirichlet, G. L. (1837). Ueber die Darstellung ganz willkührlicher Funktionen durch Sinus- und Cosinusreihen. Repertorium der Physik, 1, 152–174.Google Scholar
  19. Dirichlet, G. L. (1889). Sur la convergence des séries trigonométriques qui servent a représenter une fonction arbitraire entre des limites données. Journal für die reine und angewandte Mathematik, 4 (1829), 157–169. Reprinted in L. Kronecker, & L. Fuchs (Eds.), G. Lejeune Dirichlets Werke, 2 vols. (vol. I: 118–132). Berlin: Reimer.Google Scholar
  20. Forman, P. (2007). The primacy of science in modernity, of technology in postmodernity, and of ideology in the history of technology. History and Technology, 23, 1–152.CrossRefGoogle Scholar
  21. Gravner, J., & Griffeath, D. (2009). Modeling snow-crystal growth: A three-dimensional mesoscopic approach [Electronic Version]. Physical Review E, 79, 1–18. doi: 10.1103/PhysRevE.79.011601.CrossRefGoogle Scholar
  22. Haraway, D. (1989). Primate visions. New York: Routledge.Google Scholar
  23. Heller, E. J. (1984). Bound state eigenfunctions of classically chaotic Hamiltonian systems: Scars of periodic orbits [Electronic Version]. Physical Review Letters, 53, 1515–1518. doi: 10.1103/PhysRevLett.53.1515.CrossRefGoogle Scholar
  24. Heller, E. J., & Tomsovic, S. (1993). Postmodern quantum mechanics [Electronic Version]. Physics Today, 46(7), 38–46. doi: 10.1063/1.881358.CrossRefGoogle Scholar
  25. Hellmann, G., & Neuhaus, R. (1893). Schneeskrystalle: Beobachtungen und Studien. Berlin: Mueckenberger.Google Scholar
  26. Hempel, C. G. (1965a). The function of general laws in history [1942]. In C. G. Hempel (Ed.), Aspects of scientific explanation, and other essays in the philosophy of science (pp. 232–243). London: Macmillan.Google Scholar
  27. Hempel, C. G. (1965b). Aspects of scientific explanation. In C. G. Hempel (Ed.), Aspects of scientific explanation: And other essays in the philosophy of science (pp. 331–496). London: Macmillan.Google Scholar
  28. Hempel, C. G. (2001). Explanation in science and history [1963]. In: The Philosophy of Carl G. Hempel: Studies in science, explanation, and rationality (pp. 276–296). Oxford, New York: Oxford University Press.Google Scholar
  29. Hooke, R. (1961). Micrographia [1665]. New York: Dover Publications.Google Scholar
  30. Kepler, J. (1966). The six-cornered snowflakeI [1611]. Oxford: Clarendon Press.Google Scholar
  31. Klein, U. (2003). Experiments, models, paper tools: Cultures of organic chemistry in the nineteenth century. Stanford, CA: Stanford University Press.Google Scholar
  32. Latour, B. (1986). Visualization and cognition: Thinking with eyes and hands. Knowledge and Society: Studies in the Sociology of Culture Past and Present, 6, 1–40.Google Scholar
  33. Latour, B. (1990). Drawing things together. In M. Lynch & S. Woolgar (Eds.), Representation in scientific practice (pp. 19–68). Cambridge, MA: MIT Press.Google Scholar
  34. Latour, B. (1999). Circulating reference: Sampling the soil in the Amazon forest. In B. P. Latour (Ed.), Pandora’s Hope: Essays on the reality of science studies (pp. 24–79). Cambridge, MA: Harvard University Press.Google Scholar
  35. Laughlin, R. B., & Pines, D. (2000). The theory of everything [Electronic Version]. Proceedings of the National Academy of Sciences, 97, 28–31.CrossRefGoogle Scholar
  36. Laughlin, R. B., Pines, D., et al. (2000). The middle way [Electronic Version]. Proceedings of the National Academy of Sciences, 97, 32–37.CrossRefGoogle Scholar
  37. Libbrecht, K. G. (2006). Field guide to snowflakes. St. Paul: Voyageur Press.Google Scholar
  38. Libbrecht, K. G. (2011b). Snowcrystals.com. Retrieved 3 April 2011 from http://www.its.caltech.edu/atomic/snowcrystals/faqs/faqs.htm.
  39. Morgan, M. S. (2001). Models, stories, and the economic world. Journal of Economic Methodology, 8, 361–384.CrossRefGoogle Scholar
  40. Morgan, M. S. (2007). The curious case of the prisoner’s dilemma: Model situation? Exemplary narrative? In Creager et al. 2007, pp. 157–185.Google Scholar
  41. Morse, P. M., & Feshbach, H. (1953). Methods of theoretical physics, vol 2. New York: McGraw-Hill.Google Scholar
  42. Nakaya, U. (1954). Snow crystals: Natural and artificial. Cambridge: Harvard University Press.Google Scholar
  43. Ong, W. J. (1982). Orality and literacy: The technologizing of the word. New York: Routledge.CrossRefGoogle Scholar
  44. Oreskes, N. (2007). From scaling to simulation: Changing meanings and ambitions of models in geology. In: Creager et al. 2007, pp. 93–124.Google Scholar
  45. Poisson, S. D. (1835). Théorie analytique de la chaleur. Paris: Bachelier.Google Scholar
  46. Porter, T. M. (1995). Trust in numbers: The pursuit of objectivity in science and public life. Princeton: Princeton University Press.Google Scholar
  47. Porter, T. M. (1999). Quantification and the accounting ideal in science. In M. Biagioli (Ed.), The science studies reader (pp. 394–406). New York: Routledge.Google Scholar
  48. Rheinberger, H.-J. (1997). Toward a history of epistemic things: Synthesizing proteins in the test tube. Stanford: Stanford University Press.Google Scholar
  49. Ricoeur, P. (1984). Time and narrative, Vol. 1. (K. McLaughlin & D. Pellauer, Trans.). Chicago: University of Chicago Press.Google Scholar
  50. Schweber, S. S. (1993). Physics, community, and the crisis in physical theory. Physics Today, 46, 34–40.CrossRefGoogle Scholar
  51. Smith, C., & Wise, M. N. (1989). Energy and empire: A biographical study of Lord Kelvin. Cambridge: Cambridge University Press.Google Scholar
  52. Swammerdamm, J. (1682). Histoire générale des insectes. Utrecht: Guillaume de Walcheren.Google Scholar
  53. Tilghman, S. (2009, October 13). Schmidt fund to advance science through support for transformative technology [announcing a $25 M endowment fund from Google CEO Eric Schmidt and his wife Wendy]. News at Princeton. Retrieved 3 April 2011 from http://www.princeton.edu/main/news/archive/S25/54/00M94/.
  54. White, H. (1973). Metahistory: The historical imagination in nineteenth-century Europe. Baltimore: Johns Hopkins University Press.Google Scholar
  55. Wise, M. N. (2004). Afterward. In M. N. Wise (Ed.), Growing explanations: Historical perspectives on recent science (pp. 327–332). Durham: Duke University Press.Google Scholar
  56. Wise, M. N., & Brock, D. (1998). The culture of quantum chaos. Studies in History and Philosophy of Modern Physics, 29, 369–389.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of History and Center for Society and GeneticsUniversity of California, Los Angeles (UCLA)Los AngelesUSA

Personalised recommendations