, Volume 69, Issue 1, pp 1–30 | Cite as

Formalization and the Objects of Logic

  • Georg Brun
Original Article


There is a long-standing debate whether propositions, sentences, statements or utterances provide an answer to the question of what objects logical formulas stand for. Based on the traditional understanding of logic as a science of valid arguments, this question is firstly framed more exactly, making explicit that it calls not only for identifying some class of objects, but also for explaining their relationship to ordinary language utterances. It is then argued that there are strong arguments against the proposals commonly put forward in the debate. The core of the problem is that an informative account of the objects formulas stand for presupposes a theory of formalization; that is, a theory that explains what formulas may adequately substitute for an inference in proofs of validity. Although such theories are still subject to research, some consequences can be drawn from an analysis of the reasons why the common accounts featuring sentences, propositions or utterances fail. Theories of formalization cannot refer to utterances qua expressions of propositions; instead they may refer to sentences and rely on additional information about linguistic structure and pragmatic context.


Logic Philosophy of logic Formalization Proposition Natural language 



This paper thoroughly revises the points I made in Brun (2004, Chap. 5). Earlier versions have been presented in Bern, Hanover, Lund and Neuchâtel. For discussions and feedback, I am indebted to Michael Baumgartner, Jean-Yves Béziau, Richard Grandy, Paul Hoyningen-Huene, Timm Lampert and Klaus Petrus. Special thanks go to Dominique Kuenzle for collaboration on one of the very first drafts and to two anonymous referees of this journal for extremely helpful comments.


  1. Bealer, G. (1993). A solution to Frege’s puzzle. Philosophical Perspectives, 7, 17–60.Google Scholar
  2. Blau, U. (1977). Die dreiwertige Logik der Sprache: Ihre Syntax, Semantik und Anwendung in der Sprachanalyse. Berlin: de Gruyter.Google Scholar
  3. Brandom, R. B. (1994). Making it explicit: Reasoning, representing and discursive commitment. Cambridge, MA: Harvard University Press.Google Scholar
  4. Brun, G. (2004). Die richtige Formel: Philosophische Probleme der logischen Formalisierung (2nd ed.). Frankfurt a. M: Ontos.Google Scholar
  5. Carnap, R. (1956). Meaning and necessity: A study in semantics and modal logic (2nd ed.). Chicago: University of Chicago Press.Google Scholar
  6. Chomsky, N. (1986). Knowledge of language: Its nature, origin, and use. Westport: Praeger.Google Scholar
  7. Chomsky, N. (1995). The minimalist program. Cambridge, MA: MIT Press.Google Scholar
  8. Collins, J. (2003). Expressions, sentences, propositions. Erkenntnis, 59, 233–262.Google Scholar
  9. Cresswell, M. J. (1985). Structured meanings: The semantics of propositional attitudes. Cambridge, MA: MIT Press.Google Scholar
  10. Davidson, D. (1963). The method of extension and intension. In P. A. Schilpp (Ed.), The philosophy of Rudolf Carnap (pp. 311–349). La Salle: Open Court.Google Scholar
  11. Davidson, D. (1980). The logical form of action sentences. Criticism, comment, and defence. In Essays on actions and events (pp. 105–148). Oxford: Oxford University Press.Google Scholar
  12. Davidson, D. (1984). Inquiries into truth and interpretation. Oxford: Oxford University Press.Google Scholar
  13. Davidson, D. (1990). The structure and content of truth. Journal of Philosophy, 87, 279–328.CrossRefGoogle Scholar
  14. Davidson, D. (1999). Intellectual autobiography. In L. E. Hahn & P. A. Schilpp (Eds.), The philosophy of Donald Davidson (pp. 1–70). Chicago: Open Court.Google Scholar
  15. Epstein, R. L. (2001). The semantic foundations of logic: Predicate logic. Belmont: Wadsworth.Google Scholar
  16. Frege, G. [1879] (1988). Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. In Begriffsschrift und andere Aufsätze. Darmstadt: Wissenschaftliche Buchgesellschaft. Translated in van Heijenoort, J. (Ed.). (1967). From Frege to Gödel: A source book in mathematical logic, 1879–1931 (pp. 1–82). Cambridge, MA: Harvard University Press (References are to the original pagination).Google Scholar
  17. Frege, G. [1918] (1967). Der Gedanke: Eine logische Untersuchung. In Kleine Schriften (pp. 342–362). Darmstadt: Wissenschaftliche Buchgesellschaft. Translated in Beaney, M. (Ed.). (1997). The Frege reader (pp. 325–345). Oxford: Blackwell (References are to the original pagination).Google Scholar
  18. Frege, G. (1969). Nachgelassene Schriften, Hamburg: Meiner. Translated as Frege, G. (1979). Posthumous writings. Oxford: Basil Blackwell (References are to the German/English edition).Google Scholar
  19. Goodman, N. (1976). Languages of art: An approach to a theory of symbols (2nd ed.). Indianapolis: Hackett.Google Scholar
  20. Grandy, R. E. (1993). What do “Q” and “R” stand for anyway? In R. I. G. Hughes (Ed.), A philosophical companion to first-order logic (pp. 50–61). Indianapolis: Hackett.Google Scholar
  21. Higginbotham, J. (1991). Belief and logical form. Mind and Language, 6, 344–369.CrossRefGoogle Scholar
  22. Hoyningen-Huene, P. (2004). Formal logic: A philosophical approach. Pittsburgh: University of Pittsburgh Press. Translation of Hoyningen-Huene, P. (1998). Formale Logik: Eine philosophische Einführung. Stuttgart: Reclam.Google Scholar
  23. Iacona, A. (2002). Propositions. Genova: Name.Google Scholar
  24. Kalish, D., Montague, R., & Mar, G. (1980). Logic: Techniques of formal reasoning (2nd ed.). Fort Worth: Harcourt, Brace and Jovanovich.Google Scholar
  25. Kaplan, D. (1989). Demonstratives. An essay on the semantics, logic, metaphysics, and epistemology of demonstratives and other indexicals. In J. Almog, J. Perry & H. Wettstein (Eds.), Themes from Kaplan (pp. 481–563). Oxford: Oxford University Press.Google Scholar
  26. Kaplan, D. (1990). Words. Proceedings of the Aristotelian Society supplement, 64, 93–119.Google Scholar
  27. King, J. C. (1995). Structured propositions and complex predicates. Noûs, 29, 516–535.CrossRefGoogle Scholar
  28. King, J. C. (1996). Structured propositions and sentence structure. Journal of Philosophical Logic, 25, 495–521.Google Scholar
  29. King, J. C. (2005). Structured propositions. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy.
  30. Lampert, T. (2005). Klassische Logik: Einführung mit interaktiven Übungen (2nd ed.). Frankfurt a. M.: Ontos.Google Scholar
  31. Larson, R. K., & Ludlow, P. (1993). Interpreted logical forms. Synthese, 95, 305–355.CrossRefGoogle Scholar
  32. Larson, R. K., & Segal, G. (1995). Knowledge of meaning: An introduction to semantic theory. Cambridge, MA: MIT Press.Google Scholar
  33. Lemmon, E. J. (1987). Beginning logic (2nd ed.). London: Chapman and Hall.Google Scholar
  34. LePore, E. (2000). Meaning and argument: An introduction to logic through language. Malden: Blackwell.Google Scholar
  35. LePore, E., & Ludwig, K. (2007). Donald Davidson’s truth-theoretic semantics. Oxford: Clarendon Press.Google Scholar
  36. Link, G. (1979). Montague-Grammatik. München: Fink.Google Scholar
  37. Martin-Löf, P. (1996). On the meanings of the logical constants and the justifications of the logical laws. Nordic Journal of Philosophical Logic, 1, 11–60. Accessed on 16 April 2008.
  38. Menzel, C. (1993). The proper treatment of predication in fine-grained intensional logic. Philosophical Perspectives, 7, 61–87.Google Scholar
  39. Montague, R. [1970] (1974). Universal grammar. In Formal philosophy: Selected papers (pp. 222–246). New Haven: Yale University Press.Google Scholar
  40. Nolan, R. (1969). Truth and sentences. Mind, 78, 501–511.CrossRefGoogle Scholar
  41. Peirce, C. S. (1902). Logic. In J. M. Baldwin (Ed.), Dictionary of philosophy and psychology (Vol. 2, pp. 20–23). New York: MacMillan.Google Scholar
  42. Penco, C. (2003). Frege: Two theses, two senses. History and Philosophy of Logic, 24, 87–109.CrossRefGoogle Scholar
  43. Perry, J. (1979). The problem of the essential indexical. Noûs, 13, 3–21.CrossRefGoogle Scholar
  44. Quine, W. V. O. (1960). Word and object. Cambridge, MA: MIT Press.Google Scholar
  45. Quine, W. V. O. (1982). Methods of logic (4th ed.). Cambridge, MA: Harvard University Press.Google Scholar
  46. Ramsey, F. P. [1925] (1990). Universals. In Philosophical papers (pp. 8–30). Cambridge: Cambridge University Press.Google Scholar
  47. Richard, M. (1990). Propositional attitudes: An essay on thoughts and how we ascribe them. Cambridge: Cambridge University Press.Google Scholar
  48. Rosenberg, J. F. (1986). Die Autorität der logischen Analyse: Einige Provokationen. Neue Hefte für Philosophie, 26, 69–88.Google Scholar
  49. Sainsbury, M. (2001). Logical forms: An introduction to philosophical logic (2nd ed.). Oxford: Blackwell.Google Scholar
  50. Salmon, N. (1992). On content. Mind, 101, 733–751.CrossRefGoogle Scholar
  51. Soames, S. (1987). Direct reference, propositional attitudes, and semantic content. Philosophical Topics, 15, 47–87.Google Scholar
  52. Stalnaker, R. (1976). Propositions. In A. F. MacKay & D. D. Merrill (Eds.), Issues in the philosophy of language: Proceedings of the 1972 Oberlin Colloquium in Philosophy (pp. 79–91). New Haven: Yale University Press.Google Scholar
  53. Stalnaker, R. (1984). Inquiry. Cambridge, MA: MIT Press.Google Scholar
  54. Strawson, P. F. (1952). Introduction to logical theory. London: Methuen.Google Scholar
  55. Wittgenstein, L. (1922). Tractatus Logico-Philosophicus. London: Routledge and Kegan Paul.Google Scholar
  56. Zalta, E. N. (1988). Intensional logic and the metaphysics of intentionality. Cambridge, MA: MIT Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Institute for Environmental DecisionsETH ZürichZürichSwitzerland

Personalised recommendations