, Volume 68, Issue 3, pp 393–407 | Cite as

What can the Philosophy of Mathematics Learn from the History of Mathematics?

Original Article


This article canvasses five senses in which one might introduce an historical element into the philosophy of mathematics: 1. The temporal dimension of logic; 2. Explanatory Appeal to Context rather than to General Principles; 3. Heraclitean Flux; 4. All history is the History of Thought; and 5. History is Non-Judgmental. It concludes by adapting Bernard Williams’ distinction between ‘history of philosophy’ and ‘history of ideas’ to argue that the philosophy of mathematics is unavoidably historical, but need not and must not merge with historiography.


  1. Aspray, W., & Kitcher, P. (1988). History and philosophy of modern mathematics. Minneapolis: University of Minnesota Press.Google Scholar
  2. Breger, H., & Grosholz, E. (2000). The growth of mathematical knowledge. Boston: Kluwer Academic Publishers.Google Scholar
  3. Butterworth, B. (1999). The mathematical brain. London: Macmillan.Google Scholar
  4. Carnap, R. (1928). Der logische Aufbau der Welt. Berlin and Leipzig.Google Scholar
  5. Collingwood, R. G. (1960). Modern cosmology. In T. M. Knox (Ed.) The idea of nature. Oxford: O.U.P.Google Scholar
  6. Collingwood, R. G. (1994). The idea of history. Oxford: O.U.P. Revised edition; J. van der Dussen (Ed.).Google Scholar
  7. Collingwood, R. G. (2002). An autobiography. Oxford: Clarendon.Google Scholar
  8. Corfield, D. (2003). Towards a philosophy of real mathematics. Cambridge, UK; New York: Cambridge University Press.Google Scholar
  9. Davis, P. J., Hersh, R. (1995). The mathematical experience. Boston: Birkhäuser.Google Scholar
  10. Gibbon, E. (1980). The decline and fall of the Roman empire. Penguin.Google Scholar
  11. Giere, R. N. (1973) History and philosophy of science: Intimate relationship or marriage of convenience? Review of Historical and Philosophical Perspectives of Science, Minnesota Studies in the Philosophy of Science, 5 by R. H. Stuewer, The British Journal for the Philosophy of Science, 24(3), 282–297.Google Scholar
  12. Grosholz, E. (2005). Review of Sasaki’s Descartes’s Mathematical Thought. Philosophia Mathematica 13(3), 337–342Google Scholar
  13. Hallett, M. (1979). Towards a theory of mathematical research programmes (in two parts). British Journal for the Philosophy of Science, 30, 1–25, 135–159.Google Scholar
  14. Jorland, G. (1981). La science dans la philosophie: Les recherches épistémologiques d’Alexandre Koyré. Paris: Éditions Gallimard.Google Scholar
  15. Kitcher, P. (1983). The nature of mathematical knowledge. Oxford: Oxford University Press.Google Scholar
  16. Koetsier, T. (1991). Lakatos’ philosophy of mathematics: A historical approach (studies in the history and philosophy of mathematics vol. 3). Amsterdam: North Holland.Google Scholar
  17. Koyré, A. (1946). Philosophie de l’histoire. Europe, September, 108–117.Google Scholar
  18. Koyré, A. (1973). Études d’Histoire de la Pensée Philosophique. Paris: Gallimard. (Original: Presses Universitaires de France, 1966).Google Scholar
  19. Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. Cambridge: Cambridge University Press.Google Scholar
  20. Lakatos, I. (1978a). Science and pseudoscience. In J. Worrall & G. Currie (Eds.), Philosophical papers, Vol. 1. Cambridge: Cambridge University Press.Google Scholar
  21. Lakatos, I. (1978b). Why copernicus's programme superseded ptolemy's. In J. Worrall & G. Currie (Eds.), Philosophical papers, Vol. 2. Cambridge: Cambridge University Press.Google Scholar
  22. Larvor, B. (1997). Lakatos as historian of mathematics. Philosophia Mathematica, 5(1), 42–64.Google Scholar
  23. Larvor, B. (1998). Lakatos, an introduction. London: Routledge.Google Scholar
  24. Larvor, B. (2003). Why did Kuhn’s Structure cause a fuss? Studies in History and Philosophy of Science, 34(2), 369–390.CrossRefGoogle Scholar
  25. Larvor, B. (2007). Between logic and history. In M. Friend, N. B. Goethe, & V. S. Harizanov (Eds.), Induction, algorithmic learning theory, and philosophy. Springer.Google Scholar
  26. Laudan, L. (1996). Progress or rationality? The prospects for normative naturalism. American Philosophical Quarterly, 24(1), 19–31. Reprinted in Papineau (Ed.) The Philosophy of Science. Oxford: Oxford University Press.Google Scholar
  27. Magnello, M. E. (2006). Victorian vital and mathematical statistics. Bulletin of the British Society for the History of Mathematics, 21(3) 219–229.CrossRefGoogle Scholar
  28. Nietzsche, F. (1888). Twilight of the idols the idols (trans: Hollingdale R. J., 1968). Middlessex, UK: Penguin.Google Scholar
  29. Reichenbach, H. (1938). Experience and prediction: An analysis of the foundations and structure of knowledge. Chicago: University of Chicago Press.Google Scholar
  30. Sorell, T., & Rogers, G. A. J. (2005). Analytic philosophy and history of philosophy. Oxford: Oxford University Press.Google Scholar
  31. Williams, B. A. O. (1978). Descartes: The project of pure enquiry. Harmondsworth: Penguin; Hassocks: Harvester Press.Google Scholar
  32. Williams, B. A. O. (1994). Descartes and the historiography of philosophy. In J. Cottingham (Ed.), Reason, will and sensation: Studies in Descartes’ Metaphysics (pp. 19–27). Oxford: Clarendon Press; reprinted in M. Burnyeat (Ed.) (2006). The sense of the past: Essays in the history of philosophy. Princeton: Princeton University Press.Google Scholar
  33. Williams, B. A. O. (2006). Philosophy as a humanistic discipline, edited by A. W. Moore. Princeton and Oxford: Princeton University Press.Google Scholar
  34. Zammito, J. H. (2004). A nice derangement of epistemes: Post-positivism in the study of science from Quine to Latour. The University of Chicago Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.School of HumanitiesUniversity of HertfordshireHertfordshireUK

Personalised recommendations