Advertisement

Erkenntnis

, Volume 68, Issue 3, pp 345–358 | Cite as

Visualizations in Mathematics

Original Article

Abstract

In this paper we discuss visualizations in mathematics from a historical and didactical perspective. We consider historical debates from the 17th and 19th centuries regarding the role of intuition and visualizations in mathematics. We also consider the problem of what a visualization in mathematical learning can achieve. In an empirical study we investigate what mathematical conclusions university students made on the basis of a visualization. We emphasize that a visualization in mathematics should always be considered in its proper context.

Keywords

Function Concept Mathematical Concept Equilateral Triangle Mathematical Object Mathematical Definition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank Anders Öberg for many valuable discussions. The research leading to the present article was financially supported by the Bank of Sweden Tercentenary Foundation and the Swedish Research Council.

References

  1. du Bois-Reymond, P. (1875). Versuch einer Classification der willkürlichen Functionen reeller Argumente nach ihren Aenderungen in den kleinsten Intervallen. Journal für die reine und angewandte Mathematik, 79, 21–37.CrossRefGoogle Scholar
  2. Bråting, K., & Öberg, A. (2005). Om matematiska begrepp—en filosofisk undersökning med tillämpningar. Filosofisk Tidskrift, 26, 11–17.Google Scholar
  3. Clavius, C. (1607). Euclidis Elementorum, Frankfurt.Google Scholar
  4. Giaquinto, M. (1994). Epistemology of visual thinking in elementary real analysis. British Journal for Philosophy of Science, 45, 789–813.CrossRefGoogle Scholar
  5. Hawkins, T. (1975). Lebesque’s theory. New York: Chelsea.Google Scholar
  6. Heath, T. (1956). Euclid’s Elements. New York: Dover Publications.Google Scholar
  7. Hobbes, T. (1656). Six lessons to the professors of mathematics of the institution of Sir Henry Savile. London.Google Scholar
  8. Klein, F. (1873). Über den allgemeinen Functionsbegriff und dessen Darstellung durch eine willkürliche Curve, Sitzungsberichte der physikalich-medicinischen Societät zu Erlangen vom 8. Dec. 1873, also in Mathematische Annalen, 22, (1883), 249–259.Google Scholar
  9. Klein, F. (1893). On the mathematical character of space-intuition and the relation of pure mathematics to the applied sciences, Evanston Colloquium, Lectures on Mathematics delivered at the North-western University Evanston from Aug. 28 to Sep. 9, 1893, also in Klein, F. (2000). Lectures on Mathematics, 41–50.Google Scholar
  10. von Koch, H. (1906). Une méthode géométrique élémentaire pour l’étude de certaines questions de la théorie des courbes planes. Acta Mathematica, 30, 145–174.CrossRefGoogle Scholar
  11. Mancosu, P. (1996). Philosophy of mathematics and mathematical practice in the seventeenth century. Oxford University Press: New York.Google Scholar
  12. Mancosu, P. (2005). Visualization in logic and mathematics. In P. Mancosu, K. F. Jörgensen, & S. A. Pedersen (Eds.), Visualization, explanation and reasoning styles in mathematics (pp 13–28). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  13. Peletier, J. (1563). De contactu linearum. Basel: Oporinus.Google Scholar
  14. Prytz, J. (2004). A study of the angle of contact with a special focus on John Wallis’ conception of quantities and angles. Licentiate thesis, Uppsala University.Google Scholar
  15. Stenlund, S. (2005). Om “det outsagda”. Filosofisk tidskrift, 26, 45–54.Google Scholar
  16. Tall, D. (1991). Intuitions and rigour: the role of visualization in the calculus. In W. Zimmermann & S. Cunningham (Eds). Visualization in teaching and learning mathematics (pp. 105–119). Washington: M.A.A.Google Scholar
  17. Wallin, H., Lithner, J., Wiklund, S., & Jacobsson, S. (2000). Gymnasiematematik för NV och TE, kurs A och B. Malmō, Sweden: Liber Pyramid.Google Scholar
  18. Wallis, J. (1685). A defense of the treatise of the angle of contact, appendix to Treatise of algebra. London.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of MathematicsUppsala UniversityUppsalaSweden

Personalised recommendations