, Volume 65, Issue 1, pp 47–69 | Cite as

Psychophysical dualism from the point of view of a working psychologist



Cognitive neuroscience constitutes the third phase of development of the field of cognitive psychophysiology since it was established about half a century ago. A critical historical overview is given of this development, focusing on recurring problems that keep frustrating great expectations. It is argued that psychology has to regain its independent status with respect to cognitive neuroscience and should take psychophysical dualism seriously. A constructive quantum physical model for psychophysical interaction is presented, based on a new stochastic interpretation of the quantum potential in the de Broglie–Bohm theory. This model can be applied to analyze cognitive information processing in psychological experiments. It is shown that the quantum potential shares several features with Duns Scotus’ notion of contingent causality.


Cognitive Neuroscience Brain Response Evoke Potential Quantum Potential Oddball Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banks, E. C. (2003) Ernst Mach’s World Elements: A Study in Natural Philosophy. Kluwer Academic Publishers, DordrechtGoogle Scholar
  2. Blanchard, P., Combe, P., Zheng, W. (1987) Mathematical and Physical Aspects of Stochastic Mechanics. Springer-Verlag, BerlinGoogle Scholar
  3. Bohm D. (1980) Wholeness and the Implicate Order. Routledge & Kegan Paul, LondonGoogle Scholar
  4. Brandt E.: 2005, Verlamd, maar geen tumor. Trouw, May 28th.Google Scholar
  5. Bringsjord S., Zenzen M. (2003) Superminds: People Harness Hypercomputation, and More. Kluwer Academic Publishers, DordrechtGoogle Scholar
  6. Cassirer E. (1953) Substance and Function and Einstein’s Theory of Relativity. Dover Publications, New YorkGoogle Scholar
  7. Cohen-Tannoudji C., Dupont-Roc J., Grynberg G. (1989) Photons and Atoms: An Introduction to Quantum Electrodynamics. Wiley, New YorkGoogle Scholar
  8. Coltheart M. (2001) Assumptions and Methods in Cognitive Neuropsychology. In: Rapp B. (ed) The Handbook of Cognitive Neuropsychology: What Deficits Reveal about the Human Mind. Psychology Press, Hove, pp. 3–22Google Scholar
  9. Cox D. D., Savoy R. L. (2003) Functional Magnetic Resonance Imaging (fMRI) “Brain Reading” Detecting and Classifying Distributed Patterns of fMRI Activity in Human Visual Cortex. Neuroimage 19:261–270CrossRefGoogle Scholar
  10. Donchin E. (1966) A Multivariate Approach to the Analysis of Average Evoked Potentials. IEEE Transactions of Biomedical Engineering 13:131–139Google Scholar
  11. Donchin, E. (1975) On Evoked Potentials, Cognition and Memory. Science 190, 1004–1005CrossRefGoogle Scholar
  12. Donchin E. (ed) (1984) Cognitive Psychophysiology. Erlbaum, Hillsdale, NJGoogle Scholar
  13. Doob J.L. (2001) Classical Potential Theory and its Probabilistic Counterpart. Springer-Verlag, New YorkGoogle Scholar
  14. Dürr D. (2001). Bohmsche Mechanik als Grundlage der Quantenmechanik. Springer-Verlag, BerlinGoogle Scholar
  15. Edelman G. M. (1987) Neural Darwinism. Basic Books, New YorkGoogle Scholar
  16. Gardiner C. W. (2004) Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences 3rd edn. Springer-Verlag, BerlinGoogle Scholar
  17. Heidelberger M. (1993) Die innere Seite der Natur: G.T. Fechner’s wissenschaftliche-philosophische Weltauffassung. Vittorio Klostermann, Frankfurt a. M.Google Scholar
  18. Holland P. R. (1993) The Quantum Theory of Motion: An Account of the de Broglie–Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press, CambridgeGoogle Scholar
  19. Huizenga H. M.: 1995, The Statistical Approach to Electromagnetic Source Localization in the Brain. Ph.D. diss., Department of Psychology, University of Amsterdam, Amsterdam.Google Scholar
  20. Huizenga H. M., Heslenfeld D. J., Molenaar P. C. M. (2002) Optimal Measurement Conditions for Spatiotemporal EEG/MEG Source Analysis. Psychometrika 67:299–313CrossRefGoogle Scholar
  21. Ingham M. B., Dreyer M. (2004) The Philosophical Vision of Duns Scotus: An Introduction. The Catholic University of America Press, Washington, DCGoogle Scholar
  22. Kakutani S., (1944) Two Dimensional Brownian Motion and Harmonic Functions. Proceedings of the Imperial Academy Tokyo 20: 706–714Google Scholar
  23. Köhler W. R., Mutschler H. D. (eds) (2003) Ist der Geist berechenbar? Philosophische Reflexionen. Wissenschaftliche Buchgesellschaft, DarmstadtGoogle Scholar
  24. Krijnen C.H., (2001) Nachmetaphysischer Sinn: eine problemgeschichtliche und systematische Studie zu den Prinzipien der Wertphilosophie Heinrich Rickerts. Königshausen & Neumann, WürzbergGoogle Scholar
  25. Kusch M. (1995) Psychologism: A Case Study in the Sociology of Philosophical Knowledge. Routledge, LondonGoogle Scholar
  26. Luce R. D. (1986). Response Times: Their Role in Inferring Elementary Mental Organization. Oxford University Press, New YorkGoogle Scholar
  27. Miller M. I., Joshi S. C., Christensen G. E. (1999) Large Deformation Fluid Diffeomorphisms for Landmark and Image Matching. In: Toga A. W. (ed) Brain Warping. Academic Press, San Diego, pp. 115–131Google Scholar
  28. Meixner U. (2004) The Two Sides of Being: A Reassessment of Psycho-Physical Dualism. mentis Verlag, PaderbornGoogle Scholar
  29. Mohrhoff U. (2004) The Physics of Interactionism. In: Libet B., Freeman A., Sutherland K. (eds) The Volitional Brain: Towards a Neuroscience of Free Will. Imprint Academic, Exeter, pp. 165–184Google Scholar
  30. Molenaar P. C. M. (2004). A Manifesto on Psychology as Idiographic Science: Bringing the Person Back into Scientific Psychology, this Time Forever. Measurement 2:201–218Google Scholar
  31. Molenaar P. C. M.: 2003. State Space Techniques in Structural Equation Modeling: Transformation of Latent Variables in and Out of Latent Variable Models. Web site:
  32. Molenaar P. C. M., Roelofs J. W. (1987) The Analysis of Multiple Habituation Profiles of Single Trial Evoked Potentials. Biological Psychology 24:1–21CrossRefGoogle Scholar
  33. Molenaar P. C. M., Boomsma D. I., Dolan C. V. (1993). A Third Source of Developmental Differences. Behavior Genetics 23:519–524CrossRefGoogle Scholar
  34. Munzel G.F. (1999). Kant’s Conception of Moral Character: The “Critical” Link of Morality, Anthropology, and Reflective Judgement. University of Chicago Press, ChicagoGoogle Scholar
  35. Nelson E. (1985) Quantum Fluctuations. Princeton University Press, PrincetonGoogle Scholar
  36. Nunez P.L. (1981) Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press, OxfordGoogle Scholar
  37. Peña L. de la, Cetto A. M. (1996). The Quantum Dice: Introduction to Stochastic Electrodynamics. Kluwer Academic Publishers, DordrechtGoogle Scholar
  38. Petersen S. E., Fox P. T., Posner M. I., Mintun N., Raichle M. E. (1988) Positron Emission Tomographic Studies of Cortical Anatomy of Single-Word Processing. Nature 331:585–589CrossRefGoogle Scholar
  39. Plonsey R. (1969). Bioelectric Phenomena. McGraw-Hill, New YorkGoogle Scholar
  40. Putnam H. (2004). The Collapse of the Fact/Value Dichotomy and Other Essays 3 rd edn. Harvard University Press, Cambridge, MassGoogle Scholar
  41. Rath M. (1994) Der Psychologismusstreit in der Deutschen Philosophie. Verlag Alber, FreiburgGoogle Scholar
  42. Regan D. (1989). Human Brain Electrophysiology: Evoked Potentials and Evoked Magnetic Fields in Science and Medicine. Elsevier, New YorkGoogle Scholar
  43. Schmidt A. (2003) Natur und Geheimnis: Kritik des Naturalismus durch moderne Physik und scotische Metaphysik. Alber Verlag, FreiburgGoogle Scholar
  44. Smith E. E., Jonides J. (2002) Storage and Executive Processes in the Frontal Brain. In: Cacioppo J. T., et al. (eds) Foundations in Social Neuroscience. MIT Press, Cambridge, Mass, pp. 167–176Google Scholar
  45. Söder J. R. (1999). Kontingenz und Wissen: Die Lehre von den futura contingentia bei Johannes Duns Scotus. Aschendorff Verlag, MünsterGoogle Scholar
  46. Stapp H.P. (1993) Mind, Mind, Matter, and Quantum Physics. Springer-Verlag, BerlinGoogle Scholar
  47. Sternberg S. (1969) Memory-Scanning: Mental Processes Revealed by Reaction Time Experiments. American Scientist 57:421–457Google Scholar
  48. Sylwanowicz M. (1996). Contingent Causality and the Foundations of Duns Scotus’ Metaphysics. Brill, LeidenGoogle Scholar
  49. Toga A. W. (1999) Brain Warping. Academic Press, San DiegoGoogle Scholar
  50. Townsend J. T., Ashby F. G. (1983) Stochastic Modeling of Elementary Psychological Processes. Cambridge University Press, CambridgeGoogle Scholar
  51. Toga A. W., Thompson P. (1999) An Introduction to Brain Warping. In: Toga A.W. (ed) Brain Warping. Academic Press, San Diego, pp. 1–26Google Scholar
  52. Uttal W. R. (2001) The New Phrenology: The Limits of Localizing Cognitive Processes in the Brain. MIT, Cambridge, MassGoogle Scholar
  53. Williams T. (eds) (2003) The Cambridge Companion to Duns Scotus. Cambridge University Press, CambridgeGoogle Scholar
  54. Wood C.C. (1982) Application of Dipole Localization Methods to Source Identification of Human Evoked Potentials. Annals of the New York Academy of Sciences 388:139–155CrossRefGoogle Scholar
  55. Wood C. C., Cohen D., Cuffin B. N., Yarita M., Allison T. (1985) Electrical Sources in Human Somatosensory Cortex: Identification by Combined Magnetic and Potential Field Recordings. Science 227:1051–1053CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2006

Authors and Affiliations

  1. 1.Department of Human Development and Family Studies, College of Health and Human DevelopmentThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations