Environment Systems and Decisions

, Volume 34, Issue 2, pp 288–311 | Cite as

How to manage natural risks in mountain areas in a context of imperfect information? New frameworks and paradigms for expert assessments and decision-making

  • Jean-Marc TacnetEmail author
  • Jean Dezert
  • Corinne Curt
  • Mireille Batton-Hubert
  • Eric Chojnacki


In mountain areas, natural phenomena such as snow avalanches, debris flows and rock-falls, put people and objects at risk with sometimes dramatic consequences. Risk is classically considered as a combination of hazard, the combination of the intensity and frequency of the phenomenon, and vulnerability which corresponds to the consequences of the phenomenon on exposed people and material assets. Risk management consists in identifying the risk level as well as choosing the best strategies for risk prevention, i.e. mitigation. In the context of natural phenomena in mountainous areas, technical and scientific knowledge is often lacking. Risk management decisions are therefore based on imperfect information. This information comes from more or less reliable sources ranging from historical data, expert assessments, numerical simulations etc. Finally, risk management decisions are the result of complex knowledge management and reasoning processes. Tracing the information and propagating information quality from data acquisition to decisions are therefore important steps in the decision-making process. In this paper, a global integrated framework is proposed to improve the risk management process in a context of information imperfection provided by more or less reliable sources. It includes uncertainty as well as imprecision, inconsistency and incompleteness. It is original in the methods used and their association: sequential decision context description, development of specific decision-making methods, imperfection propagation in numerical modelling and information fusion. This framework not only assists in decision-making but also traces the process and evaluates the impact of information quality on decision-making.


Natural hazards Mountains Risk management Expert assessment Decision-making Information imperfection  Uncertainty 



These developments have been partially funded by the Paramount and StartItUp Project of the European InterReg Alpine Space program.


  1. AFNOR (2003) Norme francaise NF X 50-110—qualité en expertise: prescriptions générales de compétence pour une expertise. Tech. rep., AFNOR (Association Française de Normalisation), Saint-Denis La PlaineGoogle Scholar
  2. Amman W (2006) Risk 21: coping with Risks due to natural hazards in the 21st century, chap The risk concept. Taylor & Francis, London, pp 3–23Google Scholar
  3. Baudrit C, Guyonnet D, Dubois D (2005) Postprocessing the hybrid method for addressing uncertainty in risk assessments. J Environ Eng 131(12):1750–1754CrossRefGoogle Scholar
  4. Baudrit C, Dubois D, Guyonnet D (2006) Joint propagation and exploitation of probabilistic and possibilistic information in risk assessment. IEEE Transactions on Fuzzy Systems 14(5):593–608CrossRefGoogle Scholar
  5. Bloch I et al (2001) Fusion: General concepts and characteristics. International Journal of Intelligent Systems 16(10):1107–1134CrossRefGoogle Scholar
  6. Bonnefoy M et al (2010) The localization map of avalanche phenomena (clpa): stakes and prospects. In: International snow science workshop proceedings (ISSW) 2010, October 17th–October 22nd, Squaw Valley, CO, USAGoogle Scholar
  7. Chojnacki E, Baccou J, Destercke S (2009) Numerical accuracy and efficiency in the propagation of epistemic and aleatory uncertainty. Int J Gen Syst 0:1–23Google Scholar
  8. Curt C, Peyras L, Boissier D (2010) A knowledge formalisation and aggregation-based method for the assessment of dam performance. Comput Aided Civil Infrastruct Eng 25:171–183CrossRefGoogle Scholar
  9. Curt C, Talon A, Mauris G (2011) A dam assessment support system based on physical measurements, sensory evaluations and expert judgements. Measurement 44:192–201CrossRefGoogle Scholar
  10. Dezert J, Smarandache F (2006) Advances and applications of DSmT for information fusion—collected works—volume 2, chap Proportional Conflict Redistribution Rules for Information Fusion. American Research Press, Rehoboth, USAGoogle Scholar
  11. Dezert J, Tacnet JM (2012) Soft ELECTRE TRI outranking method based on belief functions. In: 15th International conference on information fusion proceedings, 9–12 July 2012, Singapore, pp 607–614Google Scholar
  12. Dezert J et al. (2010) Multi-criteria decision making based on dsmt-ahp. In: Belief 2010 proceedings of international workshop on the theory of belief functions, Brest (France), 1–2 April 2010Google Scholar
  13. Dubois D, Prade H (1988) Possibility theory: an approach to computerized processing of uncertainty. Plenum Press, New YorkCrossRefGoogle Scholar
  14. Dubois D, Prade H (2006) Concepts et méthodes pour l’aide à la décision 1—Outils de modélisation, Hermès—Lavoisier, Paris, chap 3—Représentations formelles de l’incertain et de l’imprécisGoogle Scholar
  15. Dubois D, NGuyen H, Prade H (2000) Fundamental of fuzzy sets. Kluwer, Boston, MA, USA; chap Possibility theory, probability and fuzzy sets: misunderstandings, bridges and gaps, pp 343–438. The handbook of fuzzy sets seriesGoogle Scholar
  16. Dupouy G et al (2012) Uncertainty in natural hazards numerical modeling: application of an hybrid approach to debris-flows simulation. In: Proceedings of the 12th international conference Interpraevent, 23–27 April 2011, Grenoble, FranceGoogle Scholar
  17. Figueira J, Greco S, Ehrgott ME (2005) Multiple criteria decision analysis: state of the art surveys, international series in operations research and management science, vol 78. Springer, BerlinGoogle Scholar
  18. Helton JC (1997) Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty. J Stat Comput Simul 57(1–4):3–76CrossRefGoogle Scholar
  19. ISO (2005) Norme NF EN ISO 19115: 2005—information géographique: métadonnées. Tech. rep., Organisation Internationale de Standardisation (International Organization for Standardization)Google Scholar
  20. ISO (2009) ISO 31000: risk management—principles and guidelines. Tech. rep., International Organization for StandardizationGoogle Scholar
  21. ISO (2010) Norme NF EN ISO 19115-2: 2010—information géographique: métadonnées. partie 2: extensions pour les images et les matrices. Tech. rep., Organisation Internationale de Standardisation (International Organization for Standardization)Google Scholar
  22. Laigle D, et al. (2003) Comparison of numerical simulation of muddy debris flow spreading to record of real events. International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings pp 635–646Google Scholar
  23. Magne L, Vasseur D (2006) Risques industriels. Complexité, incertitude et décision: une approche interdisciplinaire, Lavoisier, Paris, chap 9: le risque et sa gestion entre incertitude et ajustement de règles. Collection EDF R&DGoogle Scholar
  24. MATE, METL (1997) Plans de prévention des risques naturels prévisibles (PPR)—guide général. Tech. rep., Min. de l’Aménagement du Territoire et de l’Environnement, Min. de l’Equipement, des Transports et du Logement, FranceGoogle Scholar
  25. Merad M et al (2004) Use of multi-criteria decision-aids for risk zoning and management of large area subjected to mining-induced hazards. Tunn Undergr Space Technol 19(2):125–138CrossRefGoogle Scholar
  26. Merad M et al (2012) Towards an analytics and an ethics of expertise: learning from decision aiding experiences in public risk assessment and risk management. Cahiers du LAMSADE 326:1–18Google Scholar
  27. Mortureux Y (2001) Techniques de l’Ingénieur-Traité “L’entreprise industrielle”, chap La sûreté de fonctionnement: méthodes pour maîtriser les risques—Ref. AG 4 670, pp 1–17Google Scholar
  28. Parsons S (2001) Qualitative approaches for reasoning under uncertainty. Massachusetts Institute of Technology Press, CambridgeGoogle Scholar
  29. Ravetz J (1999) What is post-normal science. Futures 31:647–653CrossRefGoogle Scholar
  30. Renn O, Graham P (2006) Risk governance: towards an integrative approach—white paper n1. Tech. rep., IRGC (International Risk Governance Council), Geneva, SwitzerlandGoogle Scholar
  31. Roy B (1985) Méthodologie Multicritère d’Aide à la Décision. Collection Gestion—Série Production et techniques quantitatives appliqués à la gestion, Economica, ParisGoogle Scholar
  32. Roy B (1989) Main sources of inaccurate determination, uncertainty and imprecision in decision models. Math Comput Model 12(10–11):1245–1254CrossRefGoogle Scholar
  33. Saaty T (1980) The analytic hierarchy process. McGraw Hill, New YorkGoogle Scholar
  34. Saltelli A et al (2004) Sensitivity analysis in practice—a guide to assessing scientific models. Wiley, ChichesterGoogle Scholar
  35. Shafer G (1976) A mathematical theory of evidence. Princeton University Press, PrincetonGoogle Scholar
  36. Smarandache F, Dezert J (eds) (2004–2009) Advances and applications of DSmT for information fusion (Collected works), vol 1–3. American Research PressGoogle Scholar
  37. Smarandache F, Dezert J, Tacnet JM (2010) Fusion of sources of evidence with different importances and reliabilities. In: Fusion 2010 13th international conference on information fusion, Edinburgh, Scotland, 26–29 July 2010Google Scholar
  38. Stewart TJ (2005) Multiple criteria decision analysis: state of the art surveys, international series in operations research and management science, vol 78, chap Dealing with uncertainties in MCDA—chapter 11. Springer, Berlin, pp 445–470Google Scholar
  39. Tacnet JM (2009) Prise en compte de l’incertitude dans l’expertise des risques naturels en montagne par analyse multicritères et fusion d’information. Thèse de Doctorat en Sciences et Génie de l’Environnement, ENSMSE, Saint-Etienne, FranceGoogle Scholar
  40. Tacnet JM (2012) (coord.) decision support guidelines—methods, procedures and tools (WP7). Tech. rep., PARAmount project: imProved accessibility: reliability and safety of Alpine transport infrastructure related to MOUNTtainous hazards in a changing climate.
  41. Tacnet JM, Curt C (2010) Encyclopedia of natural hazards, Springer, Heidelberg, Germany; chap expert (knowledge-based) systems for disaster management, p (submitted to)Google Scholar
  42. Tacnet JM, Dezert J (2011) Cautious OWA and evidential reasoning for decision under uncertainty. In: 14th International conference on information fusion proceedings, 5–8 July 2011. Chicago, IL, USA, pp 2074–2081Google Scholar
  43. Tacnet JM, Dezert J (2012) Decision support systems—collaborative models and approaches in real environments, lecture notes in business information processing, vol 121, chap new belief function based methods for multi-criteria decision making. Springer, Heidelberg, New-York, Dordrecht, London, pp 103–120Google Scholar
  44. Tacnet JM, Lacroix E (2005) Incertitude et environnement—La fin des certitudes scientifiques, Société d’Ecologie Humaine—EdiSud, Arles 23–25 novembre 2005, chap Risques naturels en montagne: aspects juridiques de l’affichage de l’incertitude dans les expertises, pp 281–291. Colloque Incertitude et environnementGoogle Scholar
  45. Tacnet JM et al (2010a) Spatial information fusion: application to expertise and management of natural risks in mountains. In: SAGEO 2010, international conference on spatial analysis and GEOmatics, Toulouse, France, 17–19 November 2010, pp 408–412Google Scholar
  46. Tacnet JM, Batton-Hubert M, Dezert J (2010b) A two-step fusion process for multi-criteria decision applied to natural hazards in mountains. In: Belief 2010, proceedings of international workshop on the theory of belief functions, Brest, France, 1–2 April 2010Google Scholar
  47. Tacnet JM et al (2012) Efficiency assessment for torrent protection works: an approach based on safety and reliability analysis. In: Proceedings of the 12th international conference Interpraevent, 23–27 April 2011, Grenoble, France, pp 821–831Google Scholar
  48. Tacnet JM et al (2013) Road network management in the context of natural hazards: a decision-aiding process based on multi-criteria decision making methods and network structural properties analysis. In: Proceedings of the international snow science workshop (ISSW 2013), 7–11 October 2013, Grenoble, France, pp 95–106Google Scholar
  49. Vidaud-Barral L et al (2010) Improving the interoperability and user-friendliness of the french snow avalanche information systems. In: ISSW 2010, proceedings of international snow science workshop, Squaw Valley, CO, USA, 17–22 October 2010Google Scholar
  50. Villemeur A (1988) Sûreté de fonctionnement des systèmes industriels. Editions Eyrolles, ParisGoogle Scholar
  51. Woo G (1999) The mathematics of natural catastrophes. Imperial College Press, LondonCrossRefGoogle Scholar
  52. Zadeh L (1965) Fuzzy sets. Inf Control 8:338–353CrossRefGoogle Scholar
  53. Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst 1:3–28CrossRefGoogle Scholar
  54. Zwingelstein G (1995) Diagnostic des défaillances—théorie et pratique pour les systèmes industriels. Hermès, ParisGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jean-Marc Tacnet
    • 1
    Email author
  • Jean Dezert
    • 2
  • Corinne Curt
    • 5
  • Mireille Batton-Hubert
    • 4
  • Eric Chojnacki
    • 3
  1. 1.Irstea, UR ETGRSt-Martin-d’HèresFrance
  2. 2.The French Aerospace LabPalaiseauFrance
  3. 3.IRSNSaint-Paul-Lez-Durance CedexFrance
  4. 4.ENSMSESaint-ÉtienneFrance
  5. 5.Irstea, UR OHAXAix-en-Provence Cedex 5France

Personalised recommendations