The Environmentalist

, Volume 27, Issue 4, pp 533–538 | Cite as

Occupational risk from static magnetic fields of MRI scanners

  • Jolanta Karpowicz
  • Maila Hietanen
  • Krzysztof Gryz
Article

Abstract

The health care staff operating magnetic resonance imaging (MRI) scanners are exposed to static magnetic field of significant spatial heterogenity and high level of flux density—usually existing permanently during the shift. The personnel can also be exposed to pulses of magnetic field of high rate of rise/fall, so-called gradient fields, which exist only during examination of patients. The level of workers’ exposure depends both on the type of the magnet and on the ergonomical characteristic of design of the particular MRI scanner. This paper presents the current state of the art on occupational exposure to static magnetic field health effects, gaps in scientific data, MRI workers’ exposure characteristics, research needs, and suggestions for the exposure assessment protocol for future investigations.

Keywords

Diagnostic examination Electromagnetic fields Exposure assessment Health care staff MRI Occupational exposure Static magnetic fields 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACGIH. (2006). TLVs and BEIs. based on the documentations for threshold limit values for chemical substances and physical agents & biological exposure indices. Cincinnati, OH: American Conference Governmental and Industrial Hygienists.Google Scholar
  2. Bassen, H., Schaefer, D. J., Zaremba, L., Bushberg, J., Ziskin, M., & Foster K. R. (2005). IEEE Committee on Man and Radiation (COMAR) Technical information statement “exposure of medical personnel to electromagnetic fields from open magnetic resonance imaging systems”. Health Physics, 89(6), 684–689.CrossRefGoogle Scholar
  3. Dorfman, Y.G. (1971). Physical phenomena occurring in live object under the effect of constant magnetic field. In: Y. A. Kholodov (Ed.), Influence of magnetic field on biological objects, Springfield, VA, National Technical Information Service, Report JPRS63038, 11–19.Google Scholar
  4. Directive 2004/40/EC of the European Parliament and of the Council of 29 April 2004 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields) (18th individual Directive within the meaning of Article 16(1) of Directive 89/391/EEC), O.J. nr L-184 of 24 May 2004.Google Scholar
  5. EMF-NET/WHO (2005). Report on Research Needs, Environment and Health Implications of Electromagnetic Field Exposure—EMF-NET/WHO COMMITTEE – E. Cardis, G. D’Inzeo, M. Feychting, J. Juutilainen, J. Karpowicz, N. Leitgeb, P. Ravazzani, M. Repacholi, T. Samaras, R. Saunders, G. Thuroczy, E. Van Deventer, P. Vecchia and B. Veyret, http://www.jrc.cec.eu.int/emf-net/reports.cfm.
  6. ICNIRP Statement (2004). Medical magnetic resonance (MR) procedures: Protection of patients. Health Physics, 87(2), 197–216.CrossRefGoogle Scholar
  7. IEEE Std C.95.6 (2002). Standard for safety levels with respect to human exposure to electromagnetic fields, 0–3 kHz.Google Scholar
  8. Jeheson, P., Duboc, D., Lavergne, T., Guize, F., Degeorges, M., & Syrota, A. (1988). Change in human cardiac rhythm induced by 2-T static magnetic field. Radiology, 166, 227–230.Google Scholar
  9. Karpowicz, J., & Gryz, K. (2006). Health risk assessment of occupational exposure to a magnetic field from magnetic resonance imaging devices. International Journal of Occupational Safety and Ergonomics (JOSE), 12(2), 155–167.Google Scholar
  10. Keltner, J. R., Ross, M. S., Brakeman, P. R., & Budinger, T. E. (1990). Magnetohydrodynamics of blood flow. Magnetic Resonance in Medicine, 16(1), 139–149.CrossRefGoogle Scholar
  11. Kinouchi, Y., Yamaguschi, H., & Tenforde, T. S. (1996). Theoretical analysis of magnetic field interactions with aortic blood flow. Bioelectromagnetics, 17, 21–32.CrossRefGoogle Scholar
  12. Markisz, J., & Aquilia, M. (1996). Technical magnetic resonance imaging, Appleton&Lange.Google Scholar
  13. Neurath, P. W. (1968). High gradient magnetic field inhibits embryonic development of frog. Nature, 219(161), 1358–1359.CrossRefGoogle Scholar
  14. IARC Monographs 80. (2002). Non-ionizing radiation, Part 1: Static and extremely low-frequency (ELF) electric and magnetic fields. Lyon: IARC Press.Google Scholar
  15. Schenck, J. F., Dumoulin, C. L., Redington, R. W., Kressel, H. Y., Elliott, R. T., & McDougall, I. L.(1992). Human exposure to 4.0-Tesla magnetic fields in a whole-body scanner. Medical Physics, 19, 1089–1098.CrossRefGoogle Scholar
  16. Tenforde, T. S. (1992). Interaction mechanisms and biological effects of static magnetic fields. Automedica, 14, 271–293.Google Scholar
  17. Ueno, S., Harada, K., & Shiokawa K. (1984). The embryonic development of frog under strong DC magnetic fields. IEEE Transactions on Magnetics, Mag, 20(5), 1663–1665.CrossRefGoogle Scholar
  18. Ueno, S., & Iwasaka, M. (1994). Properties of diamagnetic fluid in high gradient magnetic fields. Journal of Applied Physics, 75, 7177–7179.CrossRefGoogle Scholar
  19. WHO (2006a). Environmental Health Criteria 232, Static Fields. Geneva: World Health Organization.Google Scholar
  20. WHO (2006b). Research Agenda for Static Fields. Geneva: World Health Organization.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jolanta Karpowicz
    • 1
  • Maila Hietanen
    • 2
  • Krzysztof Gryz
    • 1
  1. 1.Laboratory of Electromagnetic HazardsCentral Institute for Labour Protection – National Research Institute (CIOP-PIB)WarszawaPoland
  2. 2.Finnish Institute of Occupational Health (FIOH)HelsinkiFinland

Personalised recommendations