Skip to main content

Advertisement

Log in

Impact analysis of biodiesel production parameters for different catalyst

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Catalysts play a major role in the transesterification process. In recent years, heterogeneous catalysts have gathered attention due to the advantage of reusability and easy separation. The use of renewable sources for catalyst preparation has advanced the use of heterogeneous catalysts. The biomass-derived catalysts are important in decreasing the cost of production and promoting the commercialization of biodiesel. Various renewable sources such as sea sand, shells, fish bones, large-scale industrial wastes can be used for catalyst preparation. Catalysts prepared from these wastes can make the transesterification reaction more sustainable and cost-effective. Thus, this work comprises a review of the advancements of various catalyst technologies used in biodiesel production, including the use of waste biomass for catalyst preparation. The paper also discussed the Bimetallic and trimetallic heterogeneous catalysts for several applications in energy and biodiesel generation from microalgal lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jasrotia, A., Shukla, A. K., & Kumar, N. (2020). Impact of nanoparticles on the performance and emissions of diesel engine using mahua biodiesel. In: Yadav, S., Singh, D. B., Arora, P. K., Kumar, H. (Eds.), Proceedings of international conference in mechanical and energy technology. Springer, Singapore (pp.49–59). https://doi.org/10.1007/978-981-15-2647-3_5

  2. Dwivedi, G., & Sharma, M. P. (2013). Performance evaluation of diesel engine using biodiesel from pongamia oil. International Journal of Renewable Energy Research, 3, 325–330. https://doi.org/10.20508/ijrer.99993

    Article  Google Scholar 

  3. Dwivedi, G., Pillai, S., & Shukla, A. K. (2019). Study of performance and emissions of engines fueled by biofuels and its blends. In A. K. Agarwal, A. Gautam, N. Sharma, & A. P. Singh (Eds.), Methanol and the alternate fuel economy (pp. 77–106). Singapore: Springer . https://doi.org/10.1007/978-981-13-3287-6_5

    Chapter  Google Scholar 

  4. Dwivedi, G., & Sharma, M. P. (2014). Potential and limitation of straight vegetable oils as engine fuel—An Indian perspective. Renewable and Sustainable Energy Reviews, 33, 316–322. https://doi.org/10.1016/j.rser.2014.02.004

    Article  CAS  Google Scholar 

  5. BPSTATS (2019). BP statistical review of world energy statistical review of world, 68th edition. The Editor BP Statistical review of world energy (pp. 1–69).

  6. Kumar Shukla, A., Ahmad, Z., Sharma, M., Dwivedi, G., Nath Verma, T., Jain, S., & Zare, A. (2020). Advances of carbon capture and storage in coal-based power generating units in an indian context. Energies, 13, 4124.

    Article  Google Scholar 

  7. Verma, T. N., Shrivastava, P., Rajak, U., Dwivedi, G., Jain, S., Zare, A., & Verma, P. (2021). A comprehensive review of the influence of physicochemical properties of biodiesel on combustion characteristics, engine performance and emissions. Journal of Traffic and Transportation Engineering (English Edition), 8, 510–533. https://doi.org/10.1016/j.jtte.2021.04.006

    Article  Google Scholar 

  8. Sharma, A., Shukla, A. K., Singh, O., & Sharma, M. (2021). Recent advances in gas/steam power cycles for concentrating solar power. International Journal of Ambient Energy. https://doi.org/10.1080/01430750.2021.1919552

  9. Verma, P., Sharma, M. P., & Dwivedi, G. (2016). Evaluation and enhancement of cold flow properties of palm oil and its biodiesel. Energy Reports, 2, 8–13. https://doi.org/10.1016/j.egyr.2015.12.001

    Article  Google Scholar 

  10. Verma, P., Sharma, M. P., & Dwivedi, G. (2016). Potential use of eucalyptus biodiesel in compressed ignition engine. Egyptian Journal of Petroleum, 25, 91–95. https://doi.org/10.1016/j.ejpe.2015.03.008

    Article  Google Scholar 

  11. Dwivedi, G., & Sharma, M. P. (2013). Performance evaluation of diesel engine using biodiesel from pongamia oil.

  12. Verma, S., Sharma, B., Ahmad, J., Dwivedi, G., & Nandan, G. (2018). Impact assessment of ethanol as fuel for engine operation. Materials Today: Proceedings, 5, 6115–6120. https://doi.org/10.1016/j.matpr.2017.12.217

  13. Madhu, D., Arora, R., Sahani, S., Singh, V., & Sharma, Y. C. (2017). Synthesis of high-quality biodiesel using feedstock and catalyst derived from fish wastes. Journal of Agricultural and Food Chemistry, 65, 2100–2109.

    Article  CAS  Google Scholar 

  14. Madhu, D., Chavan, S. B., Singh, V., Singh, B., & Sharma, Y. C. (2016). An economically viable synthesis of biodiesel from a crude Millettia pinnata oil of Jharkhand, India as feedstock and crab shell derived catalyst. Bioresource Technology, 214, 210–217.

    Article  CAS  Google Scholar 

  15. Chhabra, M., Dwivedi, G., Baredar, P., Shukla, A. K., Garg, A., & Jain, S. (2020). Production & optimization of biodiesel from rubber oil using BBD technique. Materials Today: Proceedings.

  16. Rizwanul Fattah, I. M., Ong, H. C., Mahlia, T. M. I., Mofijur, M., Silitonga, A. S., Rahman, S. M. A., & Ahmad, A. (2020). State of the art of catalysts for biodiesel production. Frontiers of Energy Research, 8, 101.

    Article  Google Scholar 

  17. 11.4 Economics of Biodiesel Production (accessed September 3, 2020). Including Economics of Algae | EGEE 439: Alternative Fuels from Biomass Sources, (n.d.). https://doi.org/https://www.e-education.psu.edu/egee439/node/722

  18. Jain, S., & Sharma, M. P. (2010). Biodiesel production from Jatropha oil Biodiesel production from Jatropha curcas oil. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2010.07.047

  19. Sharma, Y. C., Kumar, A., Prasad, R., & Upadhyay, S. N. (2017). Ethanol steam reforming for hydrogen production: Latest and effective catalyst modification strategies to minimize carbonaceous deactivation. Renewable and Sustainable Energy Reviews, 74, 89–103.

    Article  CAS  Google Scholar 

  20. Jain, S., & Sharma, M. P. (2010). Prospects of biodiesel from Jatropha in India: A review. Renewable and Sustainable Energy Reviews, 14, 763–771. https://doi.org/10.1016/j.rser.2009.10.005

    Article  CAS  Google Scholar 

  21. Chhabra, M., Sharma, A., & Dwivedi, G. (2017). Performance evaluation of diesel engine using rice bran biodiesel. Egyptian Journal of Petroleum, 26, 511–518. https://doi.org/10.1016/j.ejpe.2016.07.002

    Article  Google Scholar 

  22. Dwivedi, G., Verma, P., & Sharma, M. P. (2018). Optimization of storage stability for karanja biodiesel using Box–Behnken design. Waste Biomass Valor, 9, 645–655. https://doi.org/10.1007/s12649-016-9739-2

    Article  CAS  Google Scholar 

  23. Narula, V., Thakur, A., Uniyal, A., Kalra, S., & Jain, S. (2017). Process parameter optimization of low temperature transesterification of algae-Jatropha curcas oil blend. Energy, 119, 983–988. https://doi.org/10.1016/j.energy.2016.11.043

    Article  CAS  Google Scholar 

  24. Verma, P., Sharma, M. P., & Dwivedi, G. (2016). Impact of alcohol on biodiesel production and properties. Renewable and Sustainable Energy Reviews,. https://doi.org/10.1016/j.rser.2015.11.048

  25. Abdullah, S. H. Y. S., Hanapi, N. H. M., Azid, A., Umar, R., Juahir, H., Khatoon, H., & Endut, A. (2017). A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production. Renewable and Sustainable Energy Reviews, 70, 1040–1051. https://doi.org/10.1016/j.rser.2016.12.008

    Article  CAS  Google Scholar 

  26. Vishal, D., Dubey, S., Goyal, R., Dwivedi, G., Baredar, P., & Chhabra, M. (2020). Optimization of alkali-catalyzed transesterification of rubber oil for biodiesel production & its impact on engine performance. Renewable Energy, 158, 167–180. https://doi.org/10.1016/j.renene.2020.05.136

    Article  CAS  Google Scholar 

  27. Chavan, S. B., Kumbhar, R. R., Madhu, D., Singh, B., & Sharma, Y. C. (2015). Synthesis of biodiesel from Jatropha curcas oil using waste eggshell and study of its fuel properties. RSC Advances, 5, 63596–63604.

    Article  CAS  Google Scholar 

  28. Dwivedi, G., & Sharma, M. P. (2014). Prospects of biodiesel from Pongamia in India. Renewable and Sustainable Energy Reviews, 32, 114–122. https://doi.org/10.1016/j.rser.2014.01.009

    Article  CAS  Google Scholar 

  29. Chhabra, M., Saini, B. S., & Dwivedi, G. (2019). Impact assessment of biofuel from waste neem oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,. https://doi.org/10.1080/15567036.2019.1623946

  30. Samuel, O. D., Okwu, M. O., Oyejide, O. J., Taghinezhad, E., Afzal, A., & Kaveh, M. (2020). Optimizing biodiesel production from abundant waste oils through empirical method and grey wolf optimizer. Fuel, 281, 118701. https://doi.org/10.1016/j.fuel.2020.118701

    Article  CAS  Google Scholar 

  31. Samuel, O. D., Adekojo Waheed, M., Taheri-Garavand, A., Verma, T. N., Dairo, O. U., Bolaji, B. O., & Afzal, A. (2021). Prandtl number of optimum biodiesel from food industrial waste oil and diesel fuel blend for diesel engine. Fuel, 285, 119049. https://doi.org/10.1016/j.fuel.2020.119049

    Article  CAS  Google Scholar 

  32. Zikri, A., Erlinawati, S. P., Agus, M., & Fathona, S. (2020). Biodiesel production from bintaro (Cerbera manghas L) seeds with potassium hydroxide as catalyst. Journal of Physics: Conference Series.

  33. Jain, S., & Sharma, M. P. (2010). Biodiesel production from Jatropha curcas oil. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2010.07.047

  34. Dwivedi, G., & Sharma, M. P. (2015). Application of Box–Behnken design in optimization of biodiesel yield from Pongamia oil and its stability analysis. Fuel, 145, 256–262. https://doi.org/10.1016/j.fuel.2014.12.063

    Article  CAS  Google Scholar 

  35. Sinha, S., Agarwal, A. K., & Garg, S. (2008). Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization. Energy Conversion and Management, 49, 1248–1257. https://doi.org/10.1016/j.enconman.2007.08.010

    Article  CAS  Google Scholar 

  36. Nakpong, P., & Wootthikanokkhan, S. (2010). High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand. Renewable Energy, 35, 1682–1687. https://doi.org/10.1016/j.renene.2009.12.004

    Article  CAS  Google Scholar 

  37. Jain, S., Sharma, M. P., & Rajvanshi, S. (2011). Acid base catalyzed transesterification kinetics of waste cooking oil. Fuel Processing Technology, 92, 32–38. https://doi.org/10.1016/j.fuproc.2010.08.017

  38. Ghadge, S. V., & Raheman, H. (2006). Process optimization for biodiesel production from mahua (Madhuca indica) oil using response surface methodology. Bioresource Technology, 97, 379–384. https://doi.org/10.1016/j.biortech.2005.03.014

    Article  CAS  Google Scholar 

  39. Thangaraj, B., Ramachandran, K. B., & Raj, S. P. (2014). Homogeneous catalytic transesterification of renewable azadirachta indica (neem) oil and its derivatives to biodiesel fuel via acid/alkaline esterification processes. IBIMA Publishing International Journal of Renewable Energy & Biofuels International Journal of Renewable Energy & Biofuels https://doi.org/10.5171/2014.515961

  40. Veljković, V. B., Lakićević, S. H., Stamenković, O. S., Todorović, Z. B., & Lazić, M. L. (2006). Biodiesel production from tobacco (Nicotiana tabacum L.) seed oil with a high content of free fatty acids. Fuel, 85, 2671–2675. https://doi.org/10.1016/j.fuel.2006.04.015

    Article  CAS  Google Scholar 

  41. Rashid, U., Anwar, F., Moser, B. R., & Ashraf, S. (2008). Production of sunflower oil methyl esters by optimized alkali-catalyzed methanolysis. Biomass and Bioenergy, 32, 1202–1205. https://doi.org/10.1016/j.biombioe.2008.03.001

    Article  CAS  Google Scholar 

  42. Kumar, R., Tiwari, P., & Garg, S. (2013). Alkali transesterification of linseed oil for biodiesel production. Fuel, 104, 553–560. https://doi.org/10.1016/j.fuel.2012.05.002

    Article  CAS  Google Scholar 

  43. Naik, B. D., & Meivelu, U. (2020). Experimental studies on sodium methoxide supported bentonite catalyst for biodiesel preparation from waste sunflower oil. Environmental Progress and Sustainable Energy.

  44. Kamran, E., Mashhadi, H., Mohammadi, A., & Ghobadian, B. (2020). Biodiesel production from Elaeagnus angustifolia L seed as a novel waste feedstock using potassium hydroxide catalyst. Biocatalysis and Agricultural Biotechnology, 25, 101578. https://doi.org/10.1016/j.bcab.2020.101578

    Article  Google Scholar 

  45. Jahirul, M. I., Brown, R. J., Senadeera, W., Ashwath, N., Rasul, M. G., Rahman, M. M., & O’Hara, I. M. (2015). Physio-chemical assessment of beauty leaf (Calophyllum inophyllum) as second-generation biodiesel feedstock. Energy Reports, 1, 204–215. https://doi.org/10.1016/j.egyr.2015.10.003

    Article  Google Scholar 

  46. Leung, D. Y. C., Wu, X., & Leung, M. K. H. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87, 1083–1095. https://doi.org/10.1016/j.apenergy.2009.10.006

    Article  CAS  Google Scholar 

  47. Tariq, M., Ali, S., & Khalid, N. (2012). Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: A review. Renewable and Sustainable Energy Reviews, 16, 6303–6316. https://doi.org/10.1016/j.rser.2012.07.005

    Article  CAS  Google Scholar 

  48. Alhassan, F. H., Yunus, R., Rashid, U., Sirat, K., Islam, A., Lee, H. V., & Taufiq-Yap, Y. H. (2013). Production of biodiesel from mixed waste vegetable oils using Ferric hydrogen sulphate as an effective reusable heterogeneous solid acid catalyst. Applied Catalysis, A: General, 456, 182–187. https://doi.org/10.1016/j.apcata.2013.02.019

    Article  CAS  Google Scholar 

  49. Sheikh, R., Choi, M. S., Im, J. S., & Park, Y. H. (2013). Study on the solid acid catalysts in biodiesel production from high acid value oil. Journal of Industrial and Engineering Chemistry, 19, 1413–1419. https://doi.org/10.1016/j.jiec.2013.01.005

    Article  CAS  Google Scholar 

  50. da Conceição, L. R. V., Carneiro, L. M., Rivaldi, J. D., & de Castro, H. F. (2016). Solid acid as catalyst for biodiesel production via simultaneous esterification and transesterification of macaw palm oil. Industrial Crops and Products, 89, 416–424. https://doi.org/10.1016/j.indcrop.2016.05.044

    Article  CAS  Google Scholar 

  51. Yee, K. F., Lee, K. T., Ceccato, R., & Abdullah, A. Z. (2011). Production of biodiesel from Jatropha curcas L. oil catalyzed by SO42-/ZrO2 catalyst: Effect of interaction between process variables. Bioresource Technology, 102, 4285–4289. https://doi.org/10.1016/j.biortech.2010.12.048

    Article  CAS  Google Scholar 

  52. Ramachandran, K., Sivakumar, P., Suganya, T., & Renganathan, S. (2011). Production of biodiesel from mixed waste vegetable oil using an aluminium hydrogen sulphate as a heterogeneous acid catalyst. Bioresource Technology, 102, 7289–7293. https://doi.org/10.1016/j.biortech.2011.04.100

    Article  CAS  Google Scholar 

  53. Kafuku, G., Lam, M. K., Kansedo, J., Lee, K. T., & Mbarawa, M. (2010). Heterogeneous catalyzed biodiesel production from Moringa oleifera oil. Fuel Processing Technology, 91, 1525–1529. https://doi.org/10.1016/j.fuproc.2010.05.032

  54. Park, Y. M., Lee, D. W., Kim, D. K., Lee, J. S., & Lee, K. Y. (2008). The heterogeneous catalyst system for the continuous conversion of free fatty acids in used vegetable oils for the production of biodiesel. Catalysis Today, 131, 238–243. https://doi.org/10.1016/j.cattod.2007.10.052

    Article  CAS  Google Scholar 

  55. Guldhe, A., Moura, C. V. R., Singh, P., Rawat, I., Moura, E. M., Sharma, Y., & Bux, F. (2017). Conversion of microalgal lipids to biodiesel using chromium-aluminum mixed oxide as a heterogeneous solid acid catalyst. Renewable Energy, 105, 175–182. https://doi.org/10.1016/j.renene.2016.12.053

    Article  CAS  Google Scholar 

  56. Gardy, J., Nourafkan, E., Osatiashtiani, A., Lee, A. F., Wilson, K., Hassanpour, A., & Lai, X. (2019). A core-shell SO4/Mg–Al–Fe3O4 catalyst for biodiesel production. Applied Catalysis, B: Environmental, 259, 118093. https://doi.org/10.1016/j.apcatb.2019.118093

    Article  CAS  Google Scholar 

  57. Xie, W., Wang, H., & Li, H. (2012). Silica-supported tin oxides as heterogeneous acid catalysts for transesterification of soybean oil with methanol. Industrial and Engineering Chemistry Research, 51, 225–231. https://doi.org/10.1021/ie202262t

    Article  CAS  Google Scholar 

  58. Sahani, S., Banerjee, S., & Sharma, Y. C. (2018). Study of’co-solvent effect’on production of biodiesel from Schleichera Oleosa oil using a mixed metal oxide as a potential catalyst. Journal of the Taiwan Institute of Chemical Engineers, 86, 42–56.

    Article  CAS  Google Scholar 

  59. Singh, V., Yadav, M., & Sharma, Y. C. (2017). Effect of co-solvent on biodiesel production using calcium aluminium oxide as a reusable catalyst and waste vegetable oil. Fuel, 203, 360–369.

    Article  CAS  Google Scholar 

  60. Nongbe, M. C., Ekou, T., Ekou, L., Yao, K. B., Le Grognec, E., & Felpin, F. X. (2017). Biodiesel production from palm oil using sulfonated graphene catalyst. Renewable Energy, 106, 135–141.

    Article  CAS  Google Scholar 

  61. Zhou, Y., Noshadi, I., Ding, H., Liu, J., Parnas, R. S., Clearfield, A., & Sun, L. (2018). Solid acid catalyst based on single-layer α-zirconium phosphate nanosheets for biodiesel production via esterification. Catalysts, 8, 17.

    Article  Google Scholar 

  62. Singh, V., Bux, F., & Sharma, Y. C. (2016). A low cost one pot synthesis of biodiesel from waste frying oil (WFO) using a novel material, β-potassium dizirconate (β-K2Zr2O5). Applied Energy, 172, 23–33.

    Article  CAS  Google Scholar 

  63. Borges, M. E., & Díaz, L. (2012). Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renewable and Sustainable Energy Reviews, 16, 2839–2849. https://doi.org/10.1016/j.rser.2012.01.071

    Article  CAS  Google Scholar 

  64. Boey, P. L., Maniam, G. P., & Hamid, S. A. (2011). Performance of calcium oxide as a heterogeneous catalyst in biodiesel production: A review. Chemical Engineering Journal, 168, 15–22. https://doi.org/10.1016/j.cej.2011.01.009

    Article  CAS  Google Scholar 

  65. Chavan, S. B., Kumbhar, R. R., Kumar, A., & Sharma, Y. C. (2015). Study of biodiesel blends on emission and performance characterization of a variable compression ratio engine. Energy & Fuels, 29, 4393–4398.

    Article  CAS  Google Scholar 

  66. Narula, V., Khan, M. F., Negi, A., Kalra, S., Thakur, A., & Jain, S. (2017). Low temperature optimization of biodiesel production from algal oil using CaO and CaO/Al2O3 as catalyst by the application of response surface methodology. Energy, 140, 879–884. https://doi.org/10.1016/j.energy.2017.09.028

    Article  CAS  Google Scholar 

  67. Teo, S. H., Rashid, U., & Taufiq-Yap, Y. H. (2014). Biodiesel production from crude Jatropha curcas oil using calcium based mixed oxide catalysts. Fuel, 136, 244–252. https://doi.org/10.1016/j.fuel.2014.07.062

    Article  CAS  Google Scholar 

  68. Kaur, M., & Ali, A. (2011). Lithium ion impregnated calcium oxide as nano catalyst for the biodiesel production from karanja and jatropha oils. Renewable Energy, 36, 2866–2871. https://doi.org/10.1016/j.renene.2011.04.014

    Article  CAS  Google Scholar 

  69. Takase, M., Zhang, M., Feng, W., Chen, Y., Zhao, T., Cobbina, S. J., & Wu, X. (2014). Application of zirconia modified with KOH as heterogeneous solid base catalyst to new non-edible oil for biodiesel. Energy Conversion and Management, 80, 117–125. https://doi.org/10.1016/j.enconman.2014.01.034

    Article  CAS  Google Scholar 

  70. Li, Y., Qiu, F., Yang, D., Li, X., & Sun, P. (2011). Preparation, characterization and application of heterogeneous solid base catalyst for biodiesel production from soybean oil. Biomass and Bioenergy, 35, 2787–2795. https://doi.org/10.1016/j.biombioe.2011.03.009

    Article  CAS  Google Scholar 

  71. Sun, C., Qiu, F., Yang, D., & Ye, B. (2014). Preparation of biodiesel from soybean oil catalyzed by Al–Ca hydrotalcite loaded with K2CO3 as heterogeneous solid base catalyst. Fuel Processing Technology, 126, 383–391. https://doi.org/10.1016/j.fuproc.2014.05.021

  72. Hernández-Hipólito, P., Juárez-Flores, N., Martínez-Klimova, E., Gómez-Cortés, A., Bokhimi, X., Escobar-Alarcón, L., & Klimova, T. E. (2015). Novel heterogeneous basic catalysts for biodiesel production: Sodium titanate nanotubes doped with potassium. Catalysis Today, 250, 187–196. https://doi.org/10.1016/j.cattod.2014.03.025

    Article  CAS  Google Scholar 

  73. Mahesh, S. E., Ramanathan, A., Begum, K. M. M. S., & Narayanan, A. (2015). Biodiesel production from waste cooking oil using KBr impregnated CaO as catalyst. Energy Conversion and Management, 91, 442–450. https://doi.org/10.1016/j.enconman.2014.12.031

    Article  CAS  Google Scholar 

  74. Wang, B., Li, S., Tian, S., Feng, R., & Meng, Y. (2013). A new solid base catalyst for the transesterification of rapeseed oil to biodiesel with methanol. Fuel, 104, 698–703. https://doi.org/10.1016/j.fuel.2012.08.034

    Article  CAS  Google Scholar 

  75. Tantirungrotechai, J., Thepwatee, S., & Yoosuk, B. (2013). Biodiesel synthesis over Sr/MgO solid base catalyst. Fuel, 106, 279–284. https://doi.org/10.1016/j.fuel.2013.01.028

    Article  CAS  Google Scholar 

  76. Sahani, S., Roy, T., & Sharma, Y. C. (2020). Studies on fast and green biodiesel production from an indigenous nonedible Indian feedstock using single phase strontium titanate catalyst. Energy Conversion and Management, 203, 112180. https://doi.org/10.1016/j.enconman.2019.112180

    Article  CAS  Google Scholar 

  77. Yadav, M., & Sharma, Y. C. (2018). Process optimization and catalyst poisoning study of biodiesel production from kusum oil using potassium aluminum oxide as efficient and reusable heterogeneous catalyst. Journal of Cleaner Production, 199, 593–602.

    Article  CAS  Google Scholar 

  78. Roy, T., Sahani, S., & Sharma, Y. C. (2020). Green synthesis of biodiesel from Ricinus communis oil (castor seed oil) using potassium promoted lanthanum oxide catalyst: Kinetic, thermodynamic and environmental studies. Fuel, 274, 117644. https://doi.org/10.1016/j.fuel.2020.117644

    Article  CAS  Google Scholar 

  79. Sahani, S., Roy, T., & Chandra Sharma, Y. (2019). Clean and efficient production of biodiesel using barium cerate as a heterogeneous catalyst for the biodiesel production; kinetics and thermodynamic study. Journal of Cleaner Production, 237, 117699. https://doi.org/10.1016/j.jclepro.2019.117699

    Article  CAS  Google Scholar 

  80. Yadav, M., Chavan, S. B., Singh, R., Bux, F., & Sharma, Y. C. (2019). Experimental study on emissions of algal biodiesel and its blends on a diesel engine. Journal of the Taiwan Institute of Chemical Engineers, 96, 160–168.

    Article  CAS  Google Scholar 

  81. Singh, R., Kumar, A., & Chandra Sharma, Y. (2019). Biodiesel production from microalgal oil using barium–calcium–zinc mixed oxide base catalyst: Optimization and kinetic studies. Energy & Fuels, 33, 1175–1184. https://doi.org/10.1021/acs.energyfuels.8b03461

    Article  CAS  Google Scholar 

  82. Banerjee, S., Sahani, S., & Sharma, Y. C. (2019). Process dynamic investigations and emission analyses of biodiesel produced using Sr–Ce mixed metal oxide heterogeneous catalyst. Journal of Environmental Management, 248, 109218.

    Article  CAS  Google Scholar 

  83. Sahani, S., & Sharma, Y. C. (2018). Economically viable production of biodiesel using a novel heterogeneous catalyst: Kinetic and thermodynamic investigations. Energy Conversion and Management, 171, 969–983.

    Article  CAS  Google Scholar 

  84. Yadav, M., Singh, V., & Sharma, Y. C. (2017). Methyl transesterification of waste cooking oil using a laboratory synthesized reusable heterogeneous base catalyst: Process optimization and homogeneity study of catalyst. Energy Conversion and Management, 148, 1438–1452.

    Article  CAS  Google Scholar 

  85. Chouhan, A. P. S., & Sarma, A. K. (2011). Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renewable and Sustainable Energy Reviews, 15, 4378–4399. https://doi.org/10.1016/j.rser.2011.07.112

    Article  CAS  Google Scholar 

  86. Shan, R., Lu, L., Shi, Y., Yuan, H., & Shi, J. (2018). Catalysts from renewable resources for biodiesel production. Energy Conversion and Management, 178, 277–289. https://doi.org/10.1016/j.enconman.2018.10.032

    Article  CAS  Google Scholar 

  87. Pandit, P. R., & Fulekar, M. H. (2019). Biodiesel production from microalgal biomass using CaO catalyst synthesized from natural waste material. Renewable Energy, 136, 837–845. https://doi.org/10.1016/j.renene.2019.01.047

    Article  CAS  Google Scholar 

  88. Al-Muhtaseb, A. H., Jamil, F., Al-Haj, L., Zar Myint, M. T., Mahmoud, E., Ahmad, M. N. M. … Rafiq, S. (2018). Biodiesel production over a catalyst prepared from biomass-derived waste date pits. Biotechnology Reports, 20, https://doi.org/10.1016/j.btre.2018.e00284

  89. Abu-Jrai, A. M., Jamil, F., Al-Muhtaseb, A. H., Baawain, M., Al-Haj, L., Al-Hinai, M., & Rafiq, S. (2017). Valorization of waste Date pits biomass for biodiesel production in presence of green carbon catalyst. Energy Conversion and Management, 135, 236–243. https://doi.org/10.1016/j.enconman.2016.12.083

    Article  CAS  Google Scholar 

  90. Zhao, C., Lv, P., Yang, L., Xing, S., Luo, W., & Wang, Z. (2018). Biodiesel synthesis over biochar-based catalyst from biomass waste pomelo peel. Energy Conversion and Management, 160, 477–485. https://doi.org/10.1016/j.enconman.2018.01.059

    Article  CAS  Google Scholar 

  91. Mansir, N., Teo, S. H., Rabiu, I., & Taufiq-Yap, Y. H. (2018). Effective biodiesel synthesis from waste cooking oil and biomass residue solid green catalyst. Chemical Engineering Journal, 347, 137–144. https://doi.org/10.1016/j.cej.2018.04.034

    Article  CAS  Google Scholar 

  92. Bhatia, S. K., Gurav, R., Choi, T. R., Kim, H. J., Yang, S. Y., Song, H. S., & Yang, Y. H. (2020). Conversion of waste cooking oil into biodiesel using heterogenous catalyst derived from cork biochar. Bioresource Technology, 302, 122872. https://doi.org/10.1016/j.biortech.2020.122872

    Article  CAS  Google Scholar 

  93. Bastos, R. R. C., da Luz, A. P., Corrêa, P. T. S., da Luz, G. N., da Rocha Filho, J. R., & Zamian. (2020). L.R.V. da Conceição, Optimization of biodiesel production using sulfonated carbon-based catalyst from an amazon agro-industrial waste. Energy Conversion and Management, 205, 112457. https://doi.org/10.1016/j.enconman.2019.112457

    Article  CAS  Google Scholar 

  94. Yaşar, F. (2019). Biodiesel production via waste eggshell as a low-cost heterogeneous catalyst: Its effects on some critical fuel properties and comparison with CaO. Fuel, 255, 115828. https://doi.org/10.1016/j.fuel.2019.115828

    Article  CAS  Google Scholar 

  95. Mendonça, I. M., Paes, O. A. R. L., Maia, P. J. S., Souza, M. P., Almeida, R. A., Silva, C. C., & de Freitas, F. A. (2019). New heterogeneous catalyst for biodiesel production from waste tucumã peels (Astrocaryum aculeatum Meyer): Parameters optimization study. Renewable Energy, 130, 103–110. https://doi.org/10.1016/j.renene.2018.06.059

    Article  CAS  Google Scholar 

  96. Sai, B. A. V. S. L., Subramaniapillai, N., Khadhar Mohamed, M. S. B., & Narayanan, A. (2020). Optimization of continuous biodiesel production from rubber seed oil (RSO) using calcined eggshells as heterogeneous catalyst. Journal of Environmental Chemical Engineering, 8, 103603. https://doi.org/10.1016/j.jece.2019.103603

    Article  CAS  Google Scholar 

  97. Tang, Z. E., Lim, S., Pang, Y. L., Ong, H. C., & Lee, K. T. (2018). Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: State of the art and fundamental review. Renewable and Sustainable Energy Reviews, 92, 235–253. https://doi.org/10.1016/j.rser.2018.04.056

    Article  CAS  Google Scholar 

  98. Mardhiah, H. H., Ong, H. C., Masjuki, H. H., Lim, S., & Pang, Y. L. (2017). Investigation of carbon-based solid acid catalyst from Jatropha curcas biomass in biodiesel production. Energy Conversion and Management, 144, 10–17. https://doi.org/10.1016/j.enconman.2017.04.038

    Article  CAS  Google Scholar 

  99. Saravanan Arumugamurthy, S., Sivanandi, P., Pandian, S., Choksi, H., & Subramanian, D. (2019). Conversion of a low value industrial waste into biodiesel using a catalyst derived from brewery waste: An activation and deactivation kinetic study. Waste Management, 100, 318–326. https://doi.org/10.1016/j.wasman.2019.09.030

    Article  CAS  Google Scholar 

  100. Thushari, I., Babel, S., & Samart, C. (2019). Biodiesel production in an autoclave reactor using waste palm oil and coconut coir husk derived catalyst. Renewable Energy, 134, 125–134. https://doi.org/10.1016/j.renene.2018.11.030

    Article  CAS  Google Scholar 

  101. Fatimah, I., Rubiyanto, D., Taushiyah, A., Najah, F. B., Azmi, U., & Sim, Y. L. (2019). Use of ZrO 2 supported on bamboo leaf ash as a heterogeneous catalyst in microwave-assisted biodiesel conversion. Sustainable Cities and Society, 12, 100129. https://doi.org/10.1016/j.scp.2019.100129

    Article  Google Scholar 

  102. Lathiya, D. R., Bhatt, D. V., & Maheria, K. C. (2018). Synthesis of sulfonated carbon catalyst from waste orange peel for cost effective biodiesel production. Bioresource Technology Reports, 2, 69–76. https://doi.org/10.1016/j.biteb.2018.04.007

    Article  Google Scholar 

  103. Bora, A. P., Dhawane, S. H., Anupam, K., & Halder, G. (2018). Biodiesel synthesis from Mesua ferrea oil using waste shell derived carbon catalyst. Renewable Energy, 121, 195–204. https://doi.org/10.1016/j.renene.2018.01.036

    Article  CAS  Google Scholar 

  104. Sandouqa, A., Al-Hamamre, Z., & Asfar, J. (2019). Preparation and performance investigation of a lignin-based solid acid catalyst manufactured from olive cake for biodiesel production. Renewable Energy, 132, 667–682. https://doi.org/10.1016/j.renene.2018.08.029

    Article  CAS  Google Scholar 

  105. Endut, A., Abdullah, S. H. Y. S., Hanapi, N. H. M., Hamid, S. H. A., Lananan, F., Kamarudin, M. K. A., & Khatoon, H. (2017). Optimization of biodiesel production by solid acid catalyst derived from coconut shell via response surface methodology. International Biodeterioration and Biodegradation, 124, 250–257. https://doi.org/10.1016/j.ibiod.2017.06.008

    Article  CAS  Google Scholar 

  106. Farabi, M. S. A., Ibrahim, M. L., Rashid, U., & Taufiq-Yap, Y. H. (2019). Esterification of palm fatty acid distillate using sulfonated carbon-based catalyst derived from palm kernel shell and bamboo. Energy Conversion and Management, 181, 562–570. https://doi.org/10.1016/j.enconman.2018.12.033

    Article  CAS  Google Scholar 

  107. De, S., Zhang, J., Luque, R., & Yan, N. (2016). Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy and Environmental Science, 9, 3314–3347. https://doi.org/10.1039/C6EE02002J

    Article  CAS  Google Scholar 

  108. Yang, R., Du, X., Zhang, X., Xin, H., Zhou, K., Li, D., & Hu, C. (2019). Transformation of jatropha oil into high-quality biofuel over Ni–W bimetallic catalysts. ACS Omega. https://doi.org/10.1021/acsomega.9b00375

  109. Kwong, T. L., & Yung, K. F. (2015). Heterogeneous alkaline earth metal–transition metal bimetallic catalysts for synthesis of biodiesel from low grade unrefined feedstock. RSC Advances, 5, 83748–83756. https://doi.org/10.1039/C5RA13819A

    Article  CAS  Google Scholar 

  110. Farooq, M., Ramli, A., Naeem, A., & Saleem khan, M. (2016). Effect of different metal oxides on the catalytic activity of γ-Al 2 O 3 –MgO supported bifunctional heterogeneous catalyst in biodiesel production from WCO. RSC Advances, 6, 872–881. https://doi.org/10.1039/C5RA18146A

    Article  CAS  Google Scholar 

  111. Abdulkareem, A. S., Kariim, I., Bankole, M. T., Tijani, J. O., Abodunrin, T. F., & Olu, S. C. (2017). Synthesis and characterization of tri-metallic Fe–Co–Ni catalyst supported on CaCO3 for multi-walled carbon nanotubes growth via chemical vapor deposition technique. Arabian Journal for Science and Engineering, 42, 4365–4381. https://doi.org/10.1007/s13369-017-2478-2

    Article  CAS  Google Scholar 

  112. KAMAL, N. B. M. (2018). Preparation, characterization and mechanistic study of alumina supported calcium oxide based catalysts in transesterification of refined cooking oil. Universiti Teknologi Malaysia

  113. Turkkul, B., Deliismail, O., & Seker, E. (2020). Ethyl esters biodiesel production from Spirulina sp. and Nannochloropsis oculata microalgal lipids over alumina-calcium oxide catalyst. Renewable Energy, 145, 1014–1019.

    Article  CAS  Google Scholar 

  114. Zhang, Q., Zhang, Y., Deng, T., Wei, F., Jin, J., & Ma, P. (2020). Sustainable production of biodiesel over heterogeneous acid catalysts. In Biomass, Biofuels, Biochemicals (pp. 407–432). Elsevier.

  115. Branco-Vieira, M., Mata, T. M., Martins, A. A., Freitas, M. A. V., & Caetano, N. S. (2020). Economic analysis of microalgae biodiesel production in a small-scale facility. Energy Reports, 6, 325–332. https://doi.org/10.1016/j.egyr.2020.11.156

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anoop Kumar Shukla or Tikendra Nath Verma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, G., Jain, S., Shukla, A.K. et al. Impact analysis of biodiesel production parameters for different catalyst. Environ Dev Sustain (2022). https://doi.org/10.1007/s10668-021-02073-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-021-02073-w

Keywords

Navigation