Integration of multi-sensor analysis and decision tree for evaluation of dual and quad-Pol SAR in L- and C-bands applied for marsh delineation

  • João Paulo Delapasse SimioniEmail author
  • Laurindo Antonio Guasselli
  • Victor Fernandez Nascimento
  • Luis Fernando Chimelo Ruiz
  • Tassia Fraga Belloli


Marsh is a wetland type characterized by hydromorphic soils, herbaceous vegetation, aquatic and emergent vegetation; usually, the apparent water surface does not exceed 25% of the area. Multi-polarized active remote sensors with different frequencies have characteristics that make them ideal for mapping and delineating marsh areas since they provide information on canopy roughness, vegetation moisture and amount of biomass. Therefore, the main objective of this study is to develop a method based on multi-frequency radar satellites images to delineate marsh areas using decision tree classification. In order to reach this objective, we sought to answer the following questions: (1) Are L-band SAR images more efficient for marshes delineation than C-band SAR images? (2) Is multi-sensor (L and C-band) integration more accurate for marsh areas delineation than a single sensor? and (3) What are the most efficient channels for marshes delineation? Our findings showed that L-band images present greater proportion correct (PC) for marshes delineation compared to C-band images. However, the greatest PC was found using integration of Alos Palsar 1 and Sentinel 1 satellites images, reaching more than 72% of correctness. Regarding the polarization importance to Alos Palsar 1 image, HVVH presented the highest importance, with 29%, followed by VH and HV polarizations, both with 28%. For Sentinel 1 image, the most important polarization was VH, with 22%, followed by VV + VH that presented 20%. HVVH polarization was the most important in Alos and Sentinel images integration, with 35%, followed by Alos Palsar HV and VH, with 34 and 33%, respectively. Thus, we concluded that the method based on SAR multi-frequency data integration used in this study can be easily applied by other researchers interested in marsh delineation since the radar images used are freely available and can be processed and manipulated in free GIS software.


Data mining Hydromorphic soils Polarization Wetlands 



This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES) – Finance Code 001.


  1. An, S., & Verhoeven, J. (2019). In A. Shuqing, & T. A. Jos (Eds.), Wetlands : Ecosystem services, restoration and wise use, 1st edn. Switzerland: Springer International Publishing.
  2. Andrade, N. S. D. O. (2012). R-99B polarimetric synthetic aperture radar: Analysis and applications. University of Brasilia. Retrieved from
  3. Aubert, M., Baghdadi, N. N., Zribi, M., Ose, K., El Hajj, M., Vaudour, E., et al. (2013). Toward an operational bare soil moisture mapping using TerraSAR-X data acquired over agricultural areas. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(2), 900–916. Scholar
  4. Ballanti, L., Byrd, K. B., Woo, I., & Ellings, C. (2017). Remote sensing for wetland mapping and historical change detection at the Nisqually River Delta. Sustainability (Switzerland). Scholar
  5. Betbeder, J., Rapinel, S., Corgne, S., Pottier, E., & Hubert-Moy, L. (2015). TerraSAR-X dual-pol time-series for mapping of wetland vegetation. Journal of Photogrammetry and Remote Sensing, 107, 90–98. Scholar
  6. Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees regression trees. Wadsworth: Belmont, CA (Vol. 14). Oxfordshire: Taylor & Francis.
  7. Bwangoy, J.-R. B., Hansen, M. C., Roy, D. P., Grandi, G. De, & Justice, C. O. (2010). Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices. Remote Sensing of Environment, 114(1), 73–86. Scholar
  8. Canadian Wetland Inventory Technical Group. (2016). Canada wetland inventory (data model). Stonewall.
  9. Comitê Gravatahy. (2013). Plano de Recursos Hídricos da Bacia Hidrográfica do Rio Gravataí, 582.
  10. Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46. Scholar
  11. Cunha, C. N., Piedade, M. T. F., & Junk, W. J. (2015). Classificação e Delineamento das Áreas Úmidas Brasileiras e de seus Macrohabitats. EdUFMT (Vol. 1). Cuiaba.
  12. Dabboor, M., & Brisco, B. (2018). Wetland monitoring and mapping using synthetic aperture radar. In Wetlands management: Assessing risk and sustainable solutions (Vol. 1, p. 13). London: Intechopen.
  13. de Furtado, L. F., Silva, T. S., & de Moraes Novo, E. M. (2016). Dual-season and full-polarimetric C band SAR assessment for vegetation mapping in the Amazon várzea wetlands. Remote Sensing of Environment, 174, 212–222. Scholar
  14. Eniolorunda, N. B., Mashi, S. A., & Nsofor, G. N. (2017). Toward achieving a sustainable management: Characterization of land use/land cover in Sokoto Rima floodplain, Nigeria. Environment, Development and Sustainability, 19(5), 1855–1878. Scholar
  15. Fluet-Chouinard, E., Lehner, B., Rebelo, L. M., Papa, F., & Hamilton, S. K. (2015). Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sensing of Environment, 158(March 2015), 348–361. Scholar
  16. Fu, B., Wang, Y., Campbell, A., Li, Y., Zhang, B., Yin, S., et al. (2017). Comparison of object-based and pixel-based Random Forest algorithm for wetland vegetation mapping using high spatial resolution GF-1 and SAR data. Ecological Indicators, 73, 105–117. Scholar
  17. Gini, C. (1912). Variabilita e mutabilita : contributo allo studio delle distribuzioni e delle relazioni statistiche. Bologna: Archivio Cognetti.
  18. Guo, M., Li, J., Sheng, C., Xu, J., & Wu, L. (2017). A review of wetland remote sensing. Sensors (Switzerland), 17(4), 1–36. Scholar
  19. Henderson, F. M., & Lewis, A. J. (2008). Radar detection of wetland ecosystems: A review. International Journal of Remote Sensing, 29(20), 5809–5835. Scholar
  20. Jahncke, R., Leblon, B., Bush, P., & LaRocque, A. (2018). Mapping wetlands in Nova Scotia with multi-beam RADARSAT-2 Polarimetric SAR, optical satellite imagery, and Lidar data. International Journal of Applied Earth Observation and Geoinformation, 68, 139–156. Scholar
  21. Johansson, A. M., Brekke, C., Spreen, G., & King, J. A. (2018). X-, C-, and L-band SAR signatures of newly formed sea ice in Arctic leads during winter and spring. Remote Sensing of Environment, 204(October 2017), 162–180. Scholar
  22. Kandus, P., Minotti, P. G., Morandeira, N. S., Grimson, R., González Trilla, G., González, E. B., et al. (2018). Remote sensing of wetlands in South America: Status and challenges. International Journal of Remote Sensing, 39(4), 993–1016. Scholar
  23. Kaplan, G., & Avdan, U. (2019). Evaluating the utilization of the red edge and radar bands from sentinel sensors for wetland classification. CATENA, 178, 109–119. Scholar
  24. Kaya, E., Agca, M., Adiguzel, F., & Cetin, M. (2018). Spatial data analysis with R programming for environment. Human and Ecological Risk Assessment. Scholar
  25. Kim, S., Hong, S., & Wdowinski, S. (2008). Space-based detection of wetlands’ surface water level changes from L-band SAR interferometry. Remote Sensing of Environment, 112, 681–696. Scholar
  26. Larocque, A., Leblon, B., Woodward, R., Mordini, M., Bourgeau-Chavez, L., Landon, A., et al. (2014). Use of Radarsat-2 and ALOS-PALSAR SAR images for wetland mapping in New Brunswick. International Geoscience and Remote Sensing Symposium (IGARSS), 1, 1226–1229. Scholar
  27. Lawrence, R. L., & Wright, A. (2001). Rule-based classification systems using classification and regression tree (CART) analysis. Photogrammetric Engineering & Remote Sensing, 67(10), 1137–1142. Scholar
  28. Leite, M. G., & Guasselli, L. A. (2013). Spatio-temporal dynamics of aquatic macrophytes in Banhado Grande, Gravataí River basin. Para Onde!, 7(1), 17–24.Google Scholar
  29. Li, J., & Chen, W. (2005). A rule-based method for mapping Canada’s wetlands using optical, radar and DEM data. International Journal of Remote Sensing, 26(22), 5051–5069. Scholar
  30. Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Brisco, B., Mahdavi, S., Amani, M., et al. (2018). Fisher linear discriminant analysis of coherency matrix for wetland classification using PolSAR imagery. Remote Sensing of Environment, 206(January 2017), 300–317. Scholar
  31. Mahdianpari, M., Salehi, B., Mohammadimanesh, F., & Motagh, M. (2017). Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 13–31. Scholar
  32. Mitsch, W. J., Bernal, B., Nahlik, A. M., Mander, Ü., Zhang, L., Anderson, C. J., et al. (2013). Wetlands, carbon, and climate change. Landscape Ecology, 28(4), 583–597. Scholar
  33. Mleczko, M., & Mróz, M. (2018). Wetland mapping using SAR data from the Sentinel-1A and TanDEM-X missions: A comparative study in the Biebrza floodplain (Poland). Remote Sensing, 10(2), 78. Scholar
  34. Mleczko, M, Mroz, M., & Fitrzyk, M. (2016). Wetland mapping with Sar/quad-pol data acquired during Tandem-X Science Phase. In The international archives of the photogrammetry, remote sensing and spatial information sciences (pp. 809–813), Prague.
  35. Mohammadimanesh, F., Salehi, B., Mahdianpari, M., Brisco, B., & Motagh, M. (2018). Multi-temporal, multi-frequency, and multi-polarization coherence and SAR backscatter analysis of wetlands. ISPRS Journal of Photogrammetry and Remote Sensing. Scholar
  36. Morandeira, N., Grings, F., Facchinetti, C., Kandus, P., Morandeira, N. S., Grings, F., et al. (2016). Mapping plant functional types in floodplain wetlands: An analysis of C-band polarimetric SAR data from RADARSAT-2. Remote Sensing, 8(3), 174. Scholar
  37. Moser, L., Schmitt, A., Wendleder, A., & Roth, A. (2016). Monitoring of the Lac Bam Wetland extent using dual-polarized X-band SAR data. Remote Sensing, 8(4), 302. Scholar
  38. Muro, J., Canty, M., Conradsen, K., Hüttich, C., Nielsen, A. A., Skriver, H., et al. (2016). Short-term change detection in wetlands using Sentinel-1 time series. Remote Sensing Article, 8(775), 1–14. Scholar
  39. Pontius, R. G., & Millones, M. (2011). Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407–4429. Scholar
  40. Pope, K. O., Rejmankova, E., Paris, J. F., & Woodruff, R. (1997). Detecting seasonal flooding cycles in marshes of the Yucatan Peninsula with SIR-C polarimetric radar imagery. Remote Sensing of Environment, 59(2), 157–166. Scholar
  41. Ramos, R. A., Pasqualetto, A. I., Balbueno, R. A., Quadros, E. L. L. de, & das Neves, D. D. (2014). Mapeamento e diagnóstico de áreas úmidas no Rio Grande do Sul, com o uso de ferramentas de geoprocessamento. In Anais do Simposio de Áreas Protegidas (pp. 17–21), Viçosa.Google Scholar
  42. Roushangar, K., Alizadeh, F., & Adamowski, J. (2018). Exploring the effects of climatic variables on monthly precipitation variation using a continuous wavelet-based multiscale entropy approach. Environmental Research, 165, 176–192. Scholar
  43. Saha, T. K., & Pal, S. (2018). Emerging conflict between agriculture extension and physical existence of wetland in post-dam period in Atreyee River basin of Indo-Bangladesh. Environment, Development and Sustainability. Scholar
  44. Silveira, M., & Heleno, S. (2009). Separation between water and land in SAR images using region-based level sets. IEEE Geoscience and Remote Sensing Letters, 6(3), 471–475. Scholar
  45. Simioni, J. P. D., Guasselli, L. A., & Etchelar, C. B. (2017). Connectivity among Wetlands of EPA of Banhado Grande, RS Conetividade entre Áreas Úmidas, APA do Banhado Grande, RS. Brazilian Journal of Water Resources, 22, 15. Scholar
  46. Simioni, J. P. D., Nascimento, V. F., Guasselli, L. A., Ruiz, L. F. C., & De Oliveira, G. (2018). Small inner marsh area delimitation using remote sensing spectral indexes and decision tree method in southern Brazil. Revista de Teledetección, 52, 55. Scholar
  47. Twele, A., Cao, W., Plank, S., & Martinis, S. (2016). Sentinel-1-based flood mapping: A fully automated processing chain. International Journal of Remote Sensing, 37(13), 2990–3004. Scholar
  48. Waheed, T., Bonnell, R. B., Prasher, S. O., & Paulet, E. (2006). Measuring performance in precision agriculture: CART-A decision tree approach. Agricultural Water Management, 84(1–2), 173–185. Scholar
  49. Wang, Y., Yésou, H., Wang, Y., & Yésou, H. (2018). Remote sensing of Floodpath Lakes and wetlands: A challenging frontier in the monitoring of changing environments. Remote Sensing, 10(12), 1955. Scholar
  50. Wentao-Lv, W., Qiuze-Yu, Q., & Wenxian-Yu, W. (2010). Water extraction in SAR images using GLCM and support vector machine. In IEEE 10th international conference on signal processing proceedings (pp. 740–743), IEEE.
  51. White, L., Brisco, B., Dabboor, M., Schmitt, A., Pratt, A., White, L., et al. (2015). A collection of SAR methodologies for monitoring wetlands. Remote Sensing, 7(6), 7615–7645. Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Federal University of Rio Grande do SulResearch Center on Remote Sensing and MeteorologyPorto AlegreBrazil
  2. 2.National Institute for Space ResearchEarth System Science CenterSão José dos CamposBrazil

Personalised recommendations