Quality attributes of commercial charcoals produced in Amapá, a Brazilian state located in the Amazonia

  • Maria do Rosário da Silva e Silva
  • Edielza Aline dos Santos Ribeiro
  • Jardel Pinto Barbosa
  • Francisco Tarcísio Alves Júnior
  • Marcelino Carneiro Guedes
  • Paulo Guilherme Pinheiro
  • Lina Bufalino


The charcoals of Amapá, a Brazilian state located in the Amazonia forest, have been produced from wastes of high-quality native and exotic wood species. However, there is no control to avoid mixing raw materials with different potentials for bioenergy. This work aimed to compare the quality of two brands of Amapá charcoals for domestic use, besides to analyze the variability of properties within and among packages. Charcoals of brands A and B were produced from harvesting wastes of Acacia mangium wood and sawing wastes of mixed native wood species, respectively. Five packages of each brand were acquired, from which thirteen samples were randomly selected for physical and chemical analyses. The higher heating value was estimated from the chemical composition. The brands were compared by analysis of variance or Wilcoxon–Mann–Whitney test. The variability within and between packages was investigated through box plots. The Amapá charcoals showed moisture content (≈ 7.3%) somewhat above the stipulated (5%) by the Brazilian standardization for domestic use. The proper quality of the charcoals was attested by high apparent density (≈ 0.568 g/cm3), high fixed carbon (≈ 87.2%), low volatile matter (≈ 11.7%), low ash content (≈ 1.0%) and high higher heating value (≈ 32,925.40 kJ/kg). The charcoal of the brand B showed better quality considering significant higher average apparent density, no outlier of ash content above the maximum ideal value and overall lower variability within and among packages of the properties. The apparent density greatly varied among packages, while a greater variation within packages was observed for the other properties.


Apparent density Moisture content Volatile matter Fixed carbon Ashes Higher heating value 



The authors are grateful for the support provided by Agricultural Research Corporation of Amapá (EMBRAPA-Amapá) and the State University of Amapá (UEAP).


  1. American Society for Testing and Materials (ASTM). (2013). Standard test method for chemical analysis of wood charcoal (D 1762-84). West Conshohocken: ASTM International.Google Scholar
  2. Assis, M. R., Brancheriau, L., Napoli, A., & Trugilho, P. F. (2016). Factors affecting the mechanics of carbonized wood: literature review. Wood Science and Technology, 50(3), 519–536.CrossRefGoogle Scholar
  3. Botelho, A., Lourenço-Gomes, L., & Pinto, L. (2016). Using stated preference methods to assess environmental impacts of forest biomass power plants in Portugal environment. Development and Sustainability, 18(5), 1323–1337.CrossRefGoogle Scholar
  4. Brahan, W. K. (2002). Combustibilidad de la madera: La experiência com espécies colombianas. Bogotá: Fondo de Publicaciones.Google Scholar
  5. Brand, M. A., Rodrigues, A. A., Oliveira, A., Machado, M. S., & Zen, L. R. (2015). Quality of charcoal for domestic consumption marketed in the southern highlands region of Santa Catarina. Revista Árvore, 39(6), 1165–1173.CrossRefGoogle Scholar
  6. Brazilian Association of Technical Standards (ABNT). (2003a). Wood—Determination of basic density (NBR 11941). Rio de Janeiro: ABNT.Google Scholar
  7. Brazilian Association of Technical Standards (ABNT). (2003b). Wood—Determination of moisture of chips (NBR 14929). Rio de Janeiro: ABNT.Google Scholar
  8. Brazilian tree industry (IBA). (2016). Annual report. Accessed 20 June 2018.
  9. Castro, A. F. N. M., Castro, R. V. O., de Carneiro, A. C. O., dos Santos, R. C., Carvalho, A. M. M. L., Trugilho, P. F., et al. (2016). Correlations between age, wood quality and charcoal quality of eucalyptus clones. Revista Árvore, 40(3), 551–560.CrossRefGoogle Scholar
  10. Choi, J., Shin, S.-J., & Kim, B.-R. (2015). A fundamental study for the possibility of charcoal as green infrastructure materials. Journal of the Korean Wood Science and Technology, 43(5), 691–699.CrossRefGoogle Scholar
  11. Chowdhury, Z. Z., Karim, M. Z., Ashraf, A. M., & Khalid, K. (2016). Influence of carbonization temperature on physicochemical properties of biochar derived from slow pyrolysis of durian wood (Durio zibethinus) sawdust. BioResources, 11(2), 3356–3372.Google Scholar
  12. Coordination Department for Agribusiness Development (CODEAGRO). (2015). Standard for charcoal (PMQ 3-03). São Paulo: Codeagro.Google Scholar
  13. Cordero, T., Marquez, F., Rodriguez-Mirasol, J., & Rodriguez, J. J. (2001). Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel, 80, 1567–1571.CrossRefGoogle Scholar
  14. Costa, T. G., Bianchi, M. L., Protásio, T. D. P., Trugilho, P. F., & Pereira, A. J. (2014). Wood quality of five species from Cerrado for production of charcoal. Cerne, 20(1), 37–46.CrossRefGoogle Scholar
  15. Delmastro, C., Lavagno, E., & Mutani, G. (2015). Chinese residential energy demand: scenarios to 2030 and policies implication. Energy and Buildings, 89, 46–60.CrossRefGoogle Scholar
  16. Demirbas, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 42(11), 1357–1378.CrossRefGoogle Scholar
  17. Dias Júnior, A. F., Andrade, C. R., Brito, J. O., & Milan, M. (2015a). Quality function deployment (QFD) in the evaluation of charcoal quality used for food cooking. Floresta e Ambiente, 22(2), 262–270.CrossRefGoogle Scholar
  18. Dias Júnior, A. F., Brito, J. O., & Andrade, C. R. (2015b). Granulometric influence on the combustion of charcoal for barbecue. Revista Árvore, 39(6), 1127–1133.CrossRefGoogle Scholar
  19. Elaieb, M. T., Khouaja, A., Khouja, M. L., Valette, J., Volle, G., & Candelier, K. (2018). Comparative study of local tunisian woods properties and the respective qualities of their charcoals produced by a new industrial eco-friendly carbonization process. Waste and Biomass Valorization, 9(7), 1199–1211.CrossRefGoogle Scholar
  20. Ferreira, J. E. V., Miranda, R. M., Figueiredo, A. F., Barbosa, J. P., & Brasil, E. M. (2016). Box-and-whisker plots applied to food chemistry. Journal of Chemical Education, 93(12), 2026–2032.CrossRefGoogle Scholar
  21. Food and Agriculture Organization of the United Nations (FAO). (1985). Chapter 2: Wood carbonisation and the products it yields. Accessed 22 Sept 2017.
  22. Friedl, A., Padouvas, E., Rotter, H., & Varmuza, K. (2005). Prediction of heating values of biomass fuel from elemental composition. Analytica Chimica Acta, 544, 191–198.CrossRefGoogle Scholar
  23. Garcia, D. P., Rodrigues, C. R., Dal Bem, E. A., & Ferreira, J. P. (2017). Charcoal quality for domestic use. Brazilian Journal of Biosystems Engineering, 11(1), 59–67.Google Scholar
  24. Gomes, M. T. M., Silva, M. L., Valverde, S. R., Jacovine, L. A. G., Soares, N. S., & Pires, V. A. V. (2007). Diagnostic of the metallurgical industry in Minas Gerais. Cerne, 13, 60–66.Google Scholar
  25. Jurena, T., & Hajek, J. (2011). Energy considerations in CDF modeling of biomass. Chemical Engineering Transactions, 25(7–8), 803–808.Google Scholar
  26. Katesa, J., Junpiromand, S., & Tangsathitkulchai, C. (2010). Effect of carbonization temperature on properties of char and activated carbon from coconut shell. Suranaree Journal of Science and Technology, 20(4), 269–278.Google Scholar
  27. Katyal, S., Thambimuthu, K., & Valix, M. (2003). Carbonisation of bagasse in a fixed bed reactor: Influence of process variables on char yield and characteristics. Renewable Energy, 28(5), 713–725.CrossRefGoogle Scholar
  28. Lori, J. A., Lawal, O., & Ekanem, E. J. (2007). Proximate and ultimate analysis of bagasse, sorghum and millet straws as precursors for activated carbons. Journal of Applied Sciences, 7(21), 2008.Google Scholar
  29. Medeiros Neto, P. N., Oliveira, E., & Paes, J. B. (2014). Relationship between the characteristics of wood and charcoal of two Caatinga tree species. Floresta e Ambiente, 21(4), 484–493.CrossRefGoogle Scholar
  30. Mermoud, F., Salvador, S., Van de Steene, L., & Golfier, F. (2006). Influence of the pyrolysis heating rate on the steam gasification rate of large wood char particles. Fuel, 85(10–11), 1473–1482.CrossRefGoogle Scholar
  31. Morettin, P. A., & Bussab, W. O. (2010). Estatística básica. São Paulo: Saraiva.Google Scholar
  32. Moutinho, V. H. P., Tomazello Filho, M., Brito, J. O., Ballarin, A. W., Carvalho, F. W. A., & Cardoso, C. D. C. (2017). Characterization and statistical correlation between charcoal’s physical and mechanical properties of Eucalyptus and Corymbia clones. Ciência Florestal, 27(3), 1095–1103.CrossRefGoogle Scholar
  33. National Institute of Meteorology (INMET). (2017). Historical data. Accessed 21 Sept 2017.
  34. Protásio, T. P., Bufalino, L., Mendes, R. F., Ribeiro, M. X., Trugilho, P. F., & da Leite, E. R. S. (2012). Torrefaction and carbonization of briquettes made with residues from coffee grain. BioResources, 8(1), 1166–1185.Google Scholar
  35. Protásio, T. P., Bufalino, L., Tonoli, G. H. D., Guimarães Junior, M., Trugilho, P. F., & Mendes, L. M. (2013). Brazilian lignocellulosic wastes for bioenergy production: Characterization and comparison with fossil fuels. Brazilian Journal of Agricultural and Environmental Engineering, 16(11), 1252–1258.Google Scholar
  36. Protásio, T. D. P., Guimarães Junior, M., Mirmehdi, S., Trugilho, P. F., Napoli, A., & Knovack, K. M. (2017). Combustion of biomass and charcoal made from babassu nutshell. Cerne, 23(1), 1–10.CrossRefGoogle Scholar
  37. R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Accessed 2 Jan 2018.
  38. Rosa, R. A., Arantes, M. D. C., Paes, J. B., Andrade, W. S. D. P., & Moulin, J. C. (2012). Quality of charcoal for domestic consumption. Revista Árvore, 3(2), 41–48.Google Scholar
  39. Samohyl, R. W. (2009). Controle Estatístico de Qualidade. Rio de Janeiro: Elsevier.Google Scholar
  40. Santos, R. C., Carneiro, A. C. O., Castro, A. F. M., Castro, R. V. O., Bianche, J. J., Souza, M. M., et al. (2011). Correlation of quality parameters of wood and charcoal of clones of eucalyptus. Scientia Forestalis, 39(90), 221–230.Google Scholar
  41. Silva, M. C., Numazawa, S., Araujo, M. M., Nagaish, T. Y. R., & Galvão, G. R. (2007). Charcoal from timber industry residues of three tree species logged in the municipality of Paragominas, PA. Acta Amazonica, 37(1), 61–70.CrossRefGoogle Scholar
  42. Soares, V. C., Bianchi, M. L., Trugilho, P. F., Pereira, A. J., & Höfler, J. (2014). Correlations between the properties of eucalyptus hybrids wood and charcoal. Revista Árvore, 38(3), 543–549.CrossRefGoogle Scholar
  43. Souza, N. D., Amodei, J. B., Xavier, C. N., Dias Júnior, A. F., & Carvalho, A. M. (2016). Case study of a carbonization plant: Evaluation of features and quality of charcoal aiming steel use. Floresta e Ambiente, 23(2), 270–277.CrossRefGoogle Scholar
  44. Trugilho, P. F., da Silva, J. R. M., Mori, F. A., Lima, J. T. L., Mendes, L. M., & de Mendes, L. F. B. (2005). Rendimentos e características do carvão vegetal em função da posição radial de amostragem em clones de Eucalyptus. Cerne, 11(2), 178–186.Google Scholar
  45. Vilas Boas, M. A., Carneiro, A. D. C. O., Vital, B. R., Carvalho, A. M. M. L., & Martins, M. A. (2010). Effect of carbonization temperature and the macaúba residues in the production of charcoal. Scientia Forestalis, 38(87), 481–490.Google Scholar
  46. Xu, J., Li, M., & Ni, T. (2015). Feedstock for bioethanol production from a technological paradigm perspective. BioResources, 10(3), 6285–6340.Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Maria do Rosário da Silva e Silva
    • 1
  • Edielza Aline dos Santos Ribeiro
    • 2
  • Jardel Pinto Barbosa
    • 1
  • Francisco Tarcísio Alves Júnior
    • 1
  • Marcelino Carneiro Guedes
    • 3
  • Paulo Guilherme Pinheiro
    • 4
  • Lina Bufalino
    • 1
    • 4
  1. 1.University of Amapá State/UEAPMacapáBrazil
  2. 2.Federal University of Amapá/UNIFAPMacapáBrazil
  3. 3.Brazilian Agricultural Research Corporation/EMBRAPA-AmapáMacapáBrazil
  4. 4.Rural Federal University of Amazonia/UFRABelémBrazil

Personalised recommendations