Environment, Development and Sustainability

, Volume 22, Issue 1, pp 265–279 | Cite as

Study of aerosol optical depth using satellite data (MODIS Aqua) over Indian Territory and its relation to particulate matter concentration

  • Neha Shaw
  • A. K. GoraiEmail author


Air quality all over India has been deteriorated significantly over the last few decades, posing a significant risk to health-related issues like asthma and cardiorespiratory illness. Ground-based monitoring of particulate matter (PM2.5 and PM10) in India is limited to few particular sites only; hence, health-related studies are restricted to regional scale only. Thus, the major aim of the present study is to estimate the local PM2.5 and PM10 mass concentration from the aerosol optical depth (AOD) level. AOD levels are determined from the moderate resolution imaging spectroradiometer (MODIS) onboard Earth Observing System Aqua satellites. Moreover, the annual, seasonal, and diurnal trend of AOD over India was also studied. Single and multiple linear regression models for estimating the concentrations of PM2.5 and PM10 were also conducted. Multiple regression analyses were performed considering MODIS-based AOD with meteorological parameters like temperature, relative humidity, wind speed, solar radiation, and precipitation. The results indicated that both the PM2.5 and PM10 had a weak correlation with MODIS-based AOD for simple linear regression model, whereas the regression coefficients improved significantly for multiple linear regression analyses. Thus, the proposed multiple linear regression models can be used in the estimation of PM2.5 and PM10 concentration in different parts of the country using MODIS image without ground monitoring. Therefore, the predicted results can help to perform the air pollution-related health impact studies all over the country.


Aerosol optical depth (AOD) MODIS Aqua Regression PM2.5 PM10 



Authors are also thankful to Central Pollution Control Board, New Delhi, for making air pollution data available on the website for public use, and to NASA, USA, for making MODIS satellite products available on the website.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. Analitis, A., Katsouyanni, K., Dimakopoulou, K., Samoli, E., Nikoloulopoulos, A. K., Petasakis, Y., et al. (2006). Short-term effects of ambient particles on cardiovascular and respiratory mortality. Epidemiology,17, 230–233.CrossRefGoogle Scholar
  2. Bilal, M., Nichol, J. E., & Spak, S. N. (2017). A new approach for estimation of fine particulate concentrations using satellite aerosol optical depth and binning of meteorological variables. Aerosol and Air Quality Research,17, 356–367.CrossRefGoogle Scholar
  3. Central Pollution Control Board, New Delhi, Air Quality Data Mart. Accessed August, 2014.
  4. Chitranshi, S., Sharma, S. P., & Dey, S. (2015). Satellite-based estimates of outdoor particulate pollution (PM10) for Agra City in Northern India. Air Quality, Atmosphere and Health,8, 55–65. Scholar
  5. Dey, S., & Di Girolamo, L. (2010). A climatology of aerosol optical and microphysical properties from nine years (2000–2008) of Multiangle Imaging SpectroRadiometer (MISR) data over the Indian Subcontinent. Journal of Geophysical Research,115, D15204. Scholar
  6. Diner, D. J., Beckert, J. C., Reilly, T. H., Bruegge, C. J., Conel, J. E., Kahn, R. A., et al. (1998). Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview. IEEE Transaction of Geoscience Remote Sensing,36, 1072–1087.CrossRefGoogle Scholar
  7. Gautam, S., Patra, A. K., & Kumar, P. (2018). Status and chemical characteristics of ambient PM2.5 pollutions in China: A review. Environment, Development and Sustainability. Scholar
  8. Gorai, A. K., Tuluri, F., & Tchounwou, P. B. (2014). A GIS based approach for assessing the association between air pollution and asthma in New York State, USA. International Journal Environmental Research and Public Health,11, 4845–4869. Scholar
  9. Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A., et al. (1998). AERONET: A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment,66(1), 1–16.CrossRefGoogle Scholar
  10. Huang, W., Cao, J., Tao, Y., Dai, L., Lu, S. E., Hou, B., et al. (2012). Seasonal variation of chemical species associated with shortterm mortality effects of PM2.5 in Xi’an, a Central City in China. American Journal of Epidemiology,175, 556–566.CrossRefGoogle Scholar
  11. Indian Meteorological Department, Ministry of Earth Sciences, Government of India, Annual Report. (2010). Accessed August, 2014.
  12. Jonathan, M. S., Francesca, D., Frank, C. C., Ivan, C., & Scott, L. Z. (2000). Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. The New England Journal of Medicine,343, 1742–1749.CrossRefGoogle Scholar
  13. Jonathan, O. A., Josef, G. T., & Andrew, S. (2012). Clearing the air: A review of the effects of particulate matter air pollution on human health. Journal of Medical Toxicology,8(2), 166–175.CrossRefGoogle Scholar
  14. Kahn, R. A., Gaitley, B. J., Garay, M. J., Diner, D. J., Eck, T. F., Smirnov, A., et al. (2010). Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with Aerosol Robotic Network. Journal of Geophysical Research,115, D23. Scholar
  15. Kahn, R. A., Garay, M. J., Nelson, D. L., Yau, K. K., Bull, M. A., Gaitley, B. J., et al. (2007). Satellite-derived aerosol optical depth over dark water from MISR and MODIS: Comparisons with AERONET and implications for climatological studies. Journal of Geophysical Research,112, D18205.CrossRefGoogle Scholar
  16. Kaufman, Y. J., Tanre, D., & Boucher, O. (2002). A satellite view of aerosols in the climate system. Nature,419, 215–223.CrossRefGoogle Scholar
  17. Kaufman, Y. J., Tanre, D., Gordon, H. R., Nakajima, T., Lenoble, J., Frouin, R., et al. (1997). Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect. Journal of Geophysical Research,102(D14), 16815–16830.CrossRefGoogle Scholar
  18. Keitzl, T., Kaleschke, L., & Mellado, J.-P. (2015). Turbulent enhancement of the melt-rate at an ice-ocean interface. Hamburg: Universität Hamburg Berichte zur Erdsystemforschung. Scholar
  19. King, M. D., Menzel, W. P., Kaufman, Y. J., Tanré, D., Gao, B., Platnick, S., et al. (2003). Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Transaction on Geoscience Remote Sensing,41(2), 442–458.CrossRefGoogle Scholar
  20. Kleidman, R. G., Smirnov, A., Levy, R. C., Mattoo, S., & Tanré, D. (2012). Evaluation and wind speed dependence of MODIS aerosol retrievals over open ocean. IEEE Transaction on Geoscience Remote Sensing,50, 429–435.CrossRefGoogle Scholar
  21. Lee, H. J., Coull, B. A., Bell, M. L., & Koutrakis, P. (2012). Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM2.5 concentrations. Environmental Research,118, 8–15. Scholar
  22. Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., et al. (2010). Global evaluation of the collection 5 MODIS dark-target aerosol products over land. Atmospheric Chemistry and Physics,10, 10399–10420.CrossRefGoogle Scholar
  23. Mahowald, N. (2011). Aerosol indirect effects on biogeochemical cycles and climate. Science,334, 794–796.CrossRefGoogle Scholar
  24. Massey, D. D., Aditi, K., & Ajay, T. (2013). Particulate matter concentrations and their related metal toxicity in rural residential environment of semi-arid region of India. Atmospheric Environment, 67, 278–286.CrossRefGoogle Scholar
  25. Mellado, J.-P., van Heerwaarden, C., & Garcia, J. (2016). Near-surface effects of free atmosphere stratification in free convection. Boundary Layer Meteorology,159, 69–95. Scholar
  26. Mishchenko, M. I., Liu, L., Geogdzhayev, I. V., Li, J., Carlson, B. E., Lacis, A. A., et al. (2012). Aerosol retrievals from channel-1 and -2 AVHRR radiances: Long-term trends updated and revisited. Journal of Quantitative Spectroscopy and Radiative Transfer,113(15), 1974–1980.CrossRefGoogle Scholar
  27. NASA Earth Science Data and Information System (ESDIS). MODIS data. Accessed August, 2014.
  28. Ostro, B., Broadwin, R., Green, S., Feng, W.-Y., & Lipsett, M. (2006). Fine particulate air pollution and mortality in nine California counties: Results from CALFINE. Environmental Health Perspectives,114, 29–33.CrossRefGoogle Scholar
  29. Pauli, P., Ari, A., Tuukka, P., Maija, K. K., Mikko, Ä., Heikki, J., et al. (2013). Warming-induced increase in aerosol number concentration likely to moderate climate change. Nature Geoscience,6, 438–442.CrossRefGoogle Scholar
  30. Pawan, G., Maudood, N. K., Arlindo, D. S., & Falguni, P. (2013). MODIS aerosol optical depth observations over urban areas in Pakistan: Quantity and quality of the data for air quality monitoring. Atmospheric Pollution Research,4, 43–52.CrossRefGoogle Scholar
  31. Payra, S., Soni, M., Kumar, A., Prakash, D., & Verma, S. (2015). Intercomparison of aerosol optical thickness derived from MODIS and in-situ ground datasets over Jaipur: A semi-arid zone in India. Environmental Science and Technology,49(15), 9237–9246. Scholar
  32. Pope, C. A., Ezzati, M., & Dockery, D. W. (2009). Fine particulate air pollution and life expectancy in the United States. The New England Journal of Medicine,360, 376–386.CrossRefGoogle Scholar
  33. Ramanathan, V., Crutzen, P. J., Kiehl, J. T., & Rosenfeld, D. (2001). Aerosols, climate, and the hydrological cycle. Science,294, 2119–2124.CrossRefGoogle Scholar
  34. Robert, D. B., Sanjay, R., Pope, C. A., Jeffrey, R. B., Aruni, B., Ana, V. D., et al. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation,121, 2331–2378.CrossRefGoogle Scholar
  35. Sarath, K. G., & Ramani, V. K. (2014). Source emissions and health impacts of urban air pollution in Hyderabad, India. Air Quality Atmosphere and Health,7(2), 195–207.CrossRefGoogle Scholar
  36. Sayer, A. M., Thomas, G. E., Palmer, P. I., & Grainger, R. G. (2010). Some implications of sampling choices on comparisons between satellite and model aerosol optical depth field. Atmospheric Chemistry and Physics,10, 10705–10716.CrossRefGoogle Scholar
  37. Seinfeld, J. H., & Pandis, S. N. (2006). Atmospheric chemistry and physics: From air pollution to climate change (2nd ed.). New York: Wiley.Google Scholar
  38. Simpson, R., Williams, G., Petroeschevsky, A., Best, T., Morgan, G., Denison, L., et al. (2005). The short-term effects of air pollution on daily mortality in four Australian cities. Australian and New Zealand Journal of Public Health,29, 205–212.CrossRefGoogle Scholar
  39. The National Centers for Environmental Prediction (NCEP). Accessed August, 2014.
  40. van Donkelaar, A., Martin, R. V., & Park, R. J. (2006). Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing. Journal of Geophysical Research,111, D21201. Scholar
  41. Wan Mahiyuddin, W. R., Sahani, M., Aripin, R., Latif, M. T., Thach, T. Q., & Wong, C. M. (2013). Short-term effects of daily air pollution on mortality. Atmospheric Environment,65, 69–79.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Civil EngineeringSymbiosis Institute of Technology, PunePuneIndia
  2. 2.Department of Mining EngineeringNational Institute of TechnologyRourkelaIndia

Personalised recommendations