Skip to main content

Advertisement

Log in

Discrete-choice experiments valuing local environmental impacts of renewables: two approaches to a case study in Portugal

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Despite the often mentioned environmental benefits associated with transition from fossil fuels to renewable energy sources, their use for electricity production has non-negligible negative environmental impacts. The most commonly mentioned in surveys concern different types of landscape impacts, impacts on the fauna and flora, and noise. These impacts differ by size and location of plants, and by source of energy, rendering the policy decision complex. In addition, there are other welfare issues to take into consideration, as positive and negative environmental impacts are not evenly distributed among population groups. This paper proposes to compare the welfare impacts of renewable energy sources controlling for the type of renewable as well as the specific environmental impact by source. To this end, two discrete-choice experiments are designed and applied to a national sample of the Portuguese population. In one case, only individual negative impacts of renewables are used, and in another case, the negative impacts interact with a specific source. Results show the robustness of discrete-choice experiments as a method to estimate the welfare change induced by the impacts of renewable energy sources. Overall, respondents are willing to pay to reduce the environmental impacts, thus making compensation for local impacts feasible. Moreover, the estimations reveal that respondents are significantly sensitive to the detrimental environmental effects of specific renewable energy sources, being willing to pay more to use these sources of energy relative to others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The surveys were administered as part of a broader research project on renewables in Portugal (in accordance with the acknowledgement included in this paper).

  2. As the direction of the preferences is not clear (the parameters may have positive or negative values), the impact attributes are specified as normally distributed. As a conventional procedure, the price attribute will be specified as a fixed or non-random parameter.

References

  • Bakken, T. H., Aase, A. G., Hagen, D., Sundt, H., Barton, D. N., & Lujala, P. (2014). Demonstrating a new framework for the comparison of environmental impacts from small- and large-scale hydropower and wind power projects. Journal of Environmental Management, 140, 93–101. https://doi.org/10.1016/j.jenvman.2014.01.050.

    Article  Google Scholar 

  • Bakken, T. H., Sundt, H., Ruud, A., & Harby, A. (2012). Development of small versus large hydropower in norway—Comparison of environmental impacts. Energy Procedia, 20, 185–199. https://doi.org/10.1016/j.egypro.2012.03.019.

    Article  CAS  Google Scholar 

  • Bakker, R. H., Pedersen, E., van den Berg, G. P., Stewart, R. E., Lok, W., & Bouma, J. (2012). Impact of wind turbine sound on annoyance, self-reported sleep disturbance and psychological distress. Science of the Total Environment, 425, 42–51. https://doi.org/10.1016/j.scitotenv.2012.03.005.

    Article  CAS  Google Scholar 

  • Batel, S., & Devine-Wright, P. (2015). A critical and empirical analysis of the national-local ‘gap’ in public responses to large-scale energy infrastructures. Journal of Environmental Planning and Management, 58(6), 1076–1095. https://doi.org/10.1080/09640568.2014.914020.

    Article  Google Scholar 

  • Bateman, I. J., Carson, R. T., Day, B., Hanemann, M., Hanley, N., Hett, T., et al. (2002). Economic valuation with stated preference techniques: A manual. Cheltenham: Edward Elgar Publishing.

    Book  Google Scholar 

  • Bergmann, A., Hanley, N., & Wright, R. (2006). Valuing the attributes of renewable energy investments. Energy Policy, 34(9), 1004–1014. https://doi.org/10.1016/j.enpol.2004.08.035.

    Article  Google Scholar 

  • Borchers, A. M., Duke, J. M., & Parsons, G. R. (2007). Does willingness to pay for green energy differ by source? Energy Policy, 35(6), 3327–3334. https://doi.org/10.1016/j.enpol.2006.12.009.

    Article  Google Scholar 

  • Borenstein, S. (2012). The private and public economics of renewable electricity generation. The Journal of Economic Perspectives, 26(1), 67–92.

    Article  Google Scholar 

  • Botelho, A., Arezes, P., Bernardo, C., Dias, H., & Pinto, L. (2017a). Effect of wind farm noise on local residents’ decision to adopt mitigation measures. International Journal of Environmental Research and Public Health, 14(7), 753.

    Article  Google Scholar 

  • Botelho, A., Ferreira, P., Lima, F., Pinto, L. M. C., & Sousa, S. (2017b). Assessment of the environmental impacts associated with hydropower. Renewable and Sustainable Energy Reviews, 70, 896–904. https://doi.org/10.1016/j.rser.2016.11.271.

    Article  Google Scholar 

  • Botelho, A., Lourenço-Gomes, L., Pinto, L., & Sousa, S. (2014). How to design reliable discrete choice surveys: The use of qualitative research methods. Paper presented at the ICOPEV 20142nd international conference on project evaluation (proceedings), Guimarães Portugal.

  • Botelho, A., Lourenço-Gomes, L., Pinto, L. M. C., Sousa, P., Sousa, S., & Valente, M. (2015). Using choice experiments to assess environmental impacts of dams in Portugal. AIMS Energy, 3(2333–8334), 316–325. https://doi.org/10.3934/energy.2015.3.316.

    Article  Google Scholar 

  • Botelho, A., Lourenço-Gomes, L., Pinto, L., Sousa, S., & Valente, M. (2016a). Using stated preference methods to assess environmental impacts of forest biomass power plants in Portugal. Environment, Development and Sustainability, 18(5), 1323–1337. https://doi.org/10.1007/s10668-016-9795-6.

    Article  Google Scholar 

  • Botelho, A., Lourenço-Gomes, L., Pinto, L., Sousa, S., & Valente, M. (2017c). Accounting for local impacts of photovoltaic farms: The application of two stated preferences approaches to a case-study in Portugal. Energy Policy, 109, 191–198. https://doi.org/10.1016/j.enpol.2017.06.065.

    Article  Google Scholar 

  • Botelho, A., Pinto, L. M., Lourenço-Gomes, L., Valente, M., & Sousa, S. (2016b). Public perceptions of environmental friendliness of renewable energy power plants. Energy Procedia, 106, 73–86.

    Article  Google Scholar 

  • Botelho, A., Pinto, L. M. C., Lourenço-Gomes, L., Valente, M., & Sousa, S. (2016c). Social sustainability of renewable energy sources in electricity production: An application of the contingent valuation method. Sustainable Cities and Society, 26, 429–437. https://doi.org/10.1016/j.scs.2016.05.011.

    Article  Google Scholar 

  • Champ, P., Brown, T., & Boyle, K. (2003). Primer on nonmarket valuation. The economics of nonmarket goods and resource (Vol. 3). Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Chiabrando, R., Fabrizio, E., & Garnero, G. (2009). The territorial and landscape impacts of photovoltaic systems: Definition of impacts and assessment of the glare risk. Renewable and Sustainable Energy Reviews, 13(9), 2441–2451. https://doi.org/10.1016/j.rser.2009.06.008.

    Article  Google Scholar 

  • Cicia, G., Cembalo, L., Del Giudice, T., & Palladino, A. (2012). Fossil energy versus nuclear, wind, solar and agricultural biomass: Insights from an Italian national survey. Energy Policy, 42(Supplement C), 59–66. https://doi.org/10.1016/j.enpol.2011.11.030.

    Article  Google Scholar 

  • Costa, A., Caldas, J. C., Coelho, R., Ferreiro, Md F, & Gonçalves, V. (2016). The building of a dam: Value conflicts in public decision-making. Environmental Values, 25(2), 215–234. https://doi.org/10.3197/096327116X14552114338909.

    Article  Google Scholar 

  • Devine-Wright, P. (2005). Beyond NIMBYism: Towards an integrated framework for understanding public perceptions of wind energy. Wind Energy, 8(2), 125–139. https://doi.org/10.1002/we.124.

    Article  Google Scholar 

  • DGEG. (2015). Renováveis—Estatísticas rápidas n. 134 dezembro 2015, available at www.dgeg.pt. Direção Geral de Energia e Geologia.

  • DGEG. (2017). Renováveis—Estatísticas rápidas n. 149 marco 2017. Available at www.dgeg.pt. Direção Geral de Energia e Geologia.

  • Enevoldsen, P., & Sovacool, B. K. (2016). Examining the social acceptance of wind energy: Practical guidelines for onshore wind project development in France. Renewable and Sustainable Energy Reviews, 53, 178–184. https://doi.org/10.1016/j.rser.2015.08.041.

    Article  Google Scholar 

  • EU. (2009). Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources. Official Journal of the European Union. http://data.europa.eu/eli/dir/2009/28/oj.

  • European Commission. (2014). Special Eurobarometer 409Climate change: Conducted by TNS opinion & social at the request of European Commission, Directorate-General for Climate Action (DG CLIMA) and co-ordinated by the Directorate-General for Communication.

  • Ferreiro, Md F, Gonçalves, M. E., & Costa, A. (2013). Conflicting values and public decision: The Foz Côa case. Ecological Economics, 86, 129–135.

    Article  Google Scholar 

  • Firestone, J., Bates, A., & Knapp, L. A. (2015). See me, feel me, touch me, heal me: Wind turbines, culture, landscapes, and sound impressions. Land Use Policy, 46, 241–249. https://doi.org/10.1016/j.landusepol.2015.02.015.

    Article  Google Scholar 

  • Gasparatos, A., Doll, C. N. H., Esteban, M., Ahmed, A., & Olang, T. A. (2017). Renewable energy and biodiversity: Implications for transitioning to a Green Economy. Renewable and Sustainable Energy Reviews, 70, 161–184. https://doi.org/10.1016/j.rser.2016.08.030.

    Article  Google Scholar 

  • Gracia, A., Barreiro-Hurlé, J., & Pérez y Pérez, L. (2012). Can renewable energy be financed with higher electricity prices? Evidence from a Spanish region. Energy Policy, 50, 784–794. https://doi.org/10.1016/j.enpol.2012.08.028.

    Article  Google Scholar 

  • Greene, W. H. (2012). Econometric analysis (7th ed.). New York: Pearson.

    Google Scholar 

  • Gunawardena, U. A. D. P. (2010). Inequalities and externalities of power sector: A case of Broadlands hydropower project in Sri Lanka. Energy Policy, 38(2), 726–734. https://doi.org/10.1016/j.enpol.2009.10.017.

    Article  Google Scholar 

  • Han, S.-Y., Kwak, S.-J., & Yoo, S.-H. (2008). Valuing environmental impacts of large dam construction in Korea: An application of choice experiments. Environmental Impact Assessment Review, 28(4), 256–266. https://doi.org/10.1016/j.eiar.2007.07.001.

    Article  Google Scholar 

  • Hanley, N., Mourato, S., & Wright, R. E. (2001). Choice modelling approaches: A superior alternative for environmental valuation? Journal of Economic Surveys, 15(3), 435–462.

    Article  Google Scholar 

  • Hanley, N., Wright, R., & Adamowicz, V. (1998). Using choice experiments to value the environment. Environmental & Resource Economics, 11(3–4), 413–428. https://doi.org/10.1023/A:1008287310583.

    Article  Google Scholar 

  • Hensher, D. A., & Greene, W. H. (2003). The mixed logit model: The state of practice. Transportation, 30(2), 133–176.

    Article  Google Scholar 

  • Ho, C. K. (2013). Relieving a glaring problem. Solar Today, 27, 28–31.

    Google Scholar 

  • IEA/OECD. (1998). Benign energy? The environmental implications of renewables. ‎Paris: Organisation for Economic Co-operation and Development and International Energy Agency.

    Google Scholar 

  • Johnston, R. J., Boyle, K. J., Adamowicz, W., Bennett, J., Brouwer, R., Cameron, T. A., et al. (2017). Contemporary guidance for stated preference studies. Journal of the Association of Environmental and Resource Economists, 4(2), 319–405. https://doi.org/10.1086/691697.

    Article  Google Scholar 

  • Komarek, T. M., Lupi, F., & Kaplowitz, M. D. (2011). Valuing energy policy attributes for environmental management: Choice experiment evidence from a research institution. Energy Policy, 39(9), 5105–5115. https://doi.org/10.1016/j.enpol.2011.05.054.

    Article  Google Scholar 

  • Kosenius, A.-K., & Ollikainen, M. (2013). Valuation of environmental and societal trade-offs of renewable energy sources. Energy Policy, 62, 1148–1156. https://doi.org/10.1016/j.enpol.2013.07.020.

    Article  Google Scholar 

  • Lackner, K. S., & Sachs, J. (2005). A robust strategy for sustainable energy. Brookings Papers on Economic Activity, 2005(2), 215–284.

    Article  Google Scholar 

  • Lancaster, K. J. (1966). A new approach to consumer theory. The Journal of Political Economy, 74(2), 132–157.

    Article  Google Scholar 

  • Langer, K., Decker, T., Roosen, J., & Menrad, K. (2016). A qualitative analysis to understand the acceptance of wind energy in Bavaria. Renewable and Sustainable Energy Reviews, 64, 248–259. https://doi.org/10.1016/j.rser.2016.05.084.

    Article  Google Scholar 

  • Lovich, J. E., & Ennen, J. R. (2011). Wildlife conservation and solar energy development in the desert southwest, United States. BioScience, 61(12), 982–992. https://doi.org/10.1525/bio.2011.61.12.8.

    Article  Google Scholar 

  • McFadden, D., & Train, K. (2000). Mixed MNL models for discrete response. Journal of Applied Econometrics, 15, 447–470.

    Article  Google Scholar 

  • Mérida-Rodríguez, M., Lobón-Martín, R., & Perles-Roselló, M.-J. (2015). The production of solar photovoltaic power and its landscape dimension. In M. Frolova, M.-J. Prados (Eds.), Renewable energies and European landscapes: Lessons from Southern European cases (pp. 255–277). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Pearce, D., Mourato, S., & Atkinson, G. (2006). Cost Benefit Analysis and the Environment: Recent Developments: Source OECD Environment and Sustainable Development.

  • Pedersen, E., Hallberg, L.-M., & Waye, K. P. (2007). Living in the vicinity of wind turbines—A grounded theory study. Qualitative Research in Psychology, 4(1–2), 49–63. https://doi.org/10.1080/14780880701473409.

    Article  Google Scholar 

  • Ponce, R. D., Vásquez, F., Stehr, A., Debels, P., & Orihuela, C. (2011). Estimating the economic value of landscape losses due to flooding by hydropower plants in the Chilean Patagonia. Water Resources Management, 25(10), 2449. https://doi.org/10.1007/s11269-011-9820-3.

    Article  Google Scholar 

  • Revelt, D., & Train, K. (1998). Mixed logit with repeated choices: Households’ choices of appliance efficiency level. Review of Economics and Statistics, 80(4), 647–657.

    Article  Google Scholar 

  • Rose, T., & Wollert, A. (2015). The dark side of photovoltaic—3D simulation of glare assessing risk and discomfort. Environmental Impact Assessment Review, 52, 24–30. https://doi.org/10.1016/j.eiar.2014.08.005.

    Article  Google Scholar 

  • Rosenberg, D. M., Bodaly, R. A., & Usher, P. J. (1995). Environmental and social impacts of large scale hydroelectric development: Who is listening? Global Environmental Change, 5(2), 127–148. https://doi.org/10.1016/0959-3780(95)00018-J.

    Article  Google Scholar 

  • Scherhaufer, P., Höltinger, S., Salak, B., Schauppenlehner, T., & Schmidt, J. (2017). Patterns of acceptance and non-acceptance within energy landscapes: A case study on wind energy expansion in Austria. Energy Policy. https://doi.org/10.1016/j.enpol.2017.05.057.

    Article  Google Scholar 

  • Siciliano, G., Urban, F., Kim, S., & Dara Lonn, P. (2015). Hydropower, social priorities and the rural–urban development divide: The case of large dams in Cambodia. Energy Policy, 86, 273–285. https://doi.org/10.1016/j.enpol.2015.07.009.

    Article  Google Scholar 

  • Soon, J.-J., & Ahmad, S.-A. (2015). Willingly or grudgingly? A meta-analysis on the willingness-to-pay for renewable energy use. Renewable and Sustainable Energy Reviews, 44, 877–887. https://doi.org/10.1016/j.rser.2015.01.041.

    Article  Google Scholar 

  • Sundt, S., & Rehdanz, K. (2015). Consumers’ willingness to pay for green electricity: A meta-analysis of the literature. Energy Economics, 51, 1–8. https://doi.org/10.1016/j.eneco.2015.06.005.

    Article  Google Scholar 

  • Sütterlin, B., & Siegrist, M. (2017). Public acceptance of renewable energy technologies from an abstract versus concrete perspective and the positive imagery of solar power. Energy Policy, 106, 356–366. https://doi.org/10.1016/j.enpol.2017.03.061.

    Article  Google Scholar 

  • Tilt, B., Braun, Y., & He, D. (2009). Social impacts of large dam projects: A comparison of international case studies and implications for best practice. Journal of Environmental Management, 90, S249–S257. https://doi.org/10.1016/j.jenvman.2008.07.030.

    Article  Google Scholar 

  • Torres-Sibille, Ad C, Cloquell-Ballester, V.-A., Cloquell-Ballester, V.-A., & Artacho Ramírez, M. Á. (2009). Aesthetic impact assessment of solar power plants: An objective and a subjective approach. Renewable and Sustainable Energy Reviews, 13(5), 986–999. https://doi.org/10.1016/j.rser.2008.03.012.

    Article  Google Scholar 

  • Tsoutsos, T., Frantzeskaki, N., & Gekas, V. (2005). Environmental impacts from the solar energy technologies. Energy Policy, 33(3), 289–296.

    Article  Google Scholar 

  • Wang, S., Wang, S., & Smith, P. (2015). Ecological impacts of wind farms on birds: Questions, hypotheses, and research needs. Renewable and Sustainable Energy Reviews, 44, 599–607. https://doi.org/10.1016/j.rser.2015.01.031.

    Article  Google Scholar 

  • Welsch, H. (2016). electricity externalities, siting, and the energy mix: A survey. International Review of Environmental and Resource Economics, 10(1), 57–94. https://doi.org/10.1561/101.00000083.

    Article  Google Scholar 

  • Wolsink, M. (2007). Wind power implementation: The nature of public attitudes: Equity and fairness instead of ‘backyard motives’. Renewable and Sustainable Energy Reviews, 11(6), 1188–1207.

    Article  Google Scholar 

  • Yang, Y., Solgaard, H. S., & Haider, W. (2016). Wind, hydro or mixed renewable energy source: Preference for electricity products when the share of renewable energy increases. Energy Policy, 97, 521–531. https://doi.org/10.1016/j.enpol.2016.07.030.

    Article  Google Scholar 

  • Zhao, Q., Liu, S., Deng, L., Dong, S., Yang, Z., & Yang, J. (2012). Landscape change and hydrologic alteration associated with dam construction. International Journal of Applied Earth Observation and Geoinformation, 16, 17–26.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lígia M. Costa Pinto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botelho, A., Lourenço-Gomes, L., Pinto, L.M.C. et al. Discrete-choice experiments valuing local environmental impacts of renewables: two approaches to a case study in Portugal. Environ Dev Sustain 20 (Suppl 1), 145–162 (2018). https://doi.org/10.1007/s10668-018-0169-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-018-0169-0

Keywords

Navigation