Advertisement

Environment, Development and Sustainability

, Volume 21, Issue 6, pp 2707–2720 | Cite as

Occurrence of fire foci under different land uses in the State of Amazonas during the 2005 drought

  • Maria Lucia Ferreira Barbosa
  • Rafael Coll DelgadoEmail author
  • Paulo Eduardo Teodoro
  • Marcos Gervasio Pereira
  • Tamíres Partélli Correia
  • Bruno Araujo Furtado de Mendonça
  • Rafael de Ávila Rodrigues
Article
  • 195 Downloads

Abstract

The objective of this work is to evaluate the occurrence of fire foci during the severe drought that occurred in 2005 in the State of Amazonas. The study was conducted in the State of Amazonas, which is inserted in the northern region of Brazil. The main types of vegetation are Igapó Forest, Várzea Forest and Terra Firme Forest. Kernel density was used to spatialize fire foci to quantify them in seven classes of land use and cover (forest, pasture, exposed soil, urban area, pastoral agroforestry system, agroforestry system and agriculture). Through the regression analysis, the relation among the number of fire foci and four meteorological variables was obtained: rainfall, evapotranspiration, relative humidity and average air temperature. Forest and pasture classes were those with the highest number of fire foci corresponding, respectively, to 58 and 37% of the total number of foci. This can be explained by the greater representativeness of these classes in the State and by the high degree of soil exposure in the case of pasture. The number of fire foci was higher in the dry season, covering approximately 85% of the total fire foci. The variable that had the greatest influence on the occurrence of fire foci in the dry season was evapotranspiration. The study puts on alert the vulnerability of the State of Amazonas to the occurrence of fires and may also suggest actions to mitigate carbon emissions and biomass stock. Research like this one may provide subsidies to region’s managers in an attempt to preserve forest areas and a greater controlling in priority areas considered very high.

Keywords

Fire foci Amazonas Kernel density Multiple linear regressions Land cover Climate change 

References

  1. Aragao, L. E. O., Malhi, Y., Roman-Cuesta, R. M., Saatchi, S., Anderson, L. O., & Shimabukuro, Y. E. (2007). Spatial patterns and fire response of recent Amazonian droughts. Geophysical Research Letters,34, 7.  https://doi.org/10.1029/2006GL028946.CrossRefGoogle Scholar
  2. Bacani, V. M. (2016). Geoprocessing applied to risk assessment of forest fires in the municipality of Bodoquena, Mato Grosso do Sul. Revista Árvore,40(6), 1003–1011.  https://doi.org/10.1590/0100-67622016000600005.CrossRefGoogle Scholar
  3. Bagley, J. E., Desai, A. R., Harding, K. J., Snyder, P. K., & Foley, J. Á. (2014). Drought and deforestation: Has land cover change influenced recent precipitation extremes in the Amazon? Journal of Climate,27(1), 345–361.  https://doi.org/10.1175/JCLI-D-12-00369.1.CrossRefGoogle Scholar
  4. Brown, I. F., Schroeder, W., Setzer, A., De Los Rios Maldonado, M., Pantoja, N., Duarte, A., et al. (2006). Monitoring fires in southwestern Amazonia rain forests. Eos, Transactions American Geophysical Union,87(26), 253–259.  https://doi.org/10.1029/2006EO260001.CrossRefGoogle Scholar
  5. Campos, M., & Higuchi, M. (2009). A Floresta Amazônica e seu papel nas mudanças climáticas. Série Técnica Meio Ambiente e Desenvolvimento Sustentável, (18): 36. Disponível em:  http://www.terrabrasilis.org.br/ecotecadigital/pdf/a-floresta-amazonica-e-seu-papel-nas-mudancas-climaticas.pdf. Acesso em 12 July 2017.
  6. de Oliveira-Serrão, E. A., dos Santos, C. A., & de Lima, A. M. M. (2015). Avaliação da seca de 2005 na Amazônia: uma análise da calha do rio Solimões. Estação Científica (UNIFAP),4(2), 99–109.Google Scholar
  7. Duffy, P. B., Brando, P., Asner, G. P., & Field, C. B. (2015). Projections of future meteorological drought and wet periods in the Amazon. Proceedings of the National Academy of Sciences,112(43), 13172–13177.  https://doi.org/10.1073/pnas.1421010112/-/DCSupplemental.CrossRefGoogle Scholar
  8. Espinoza, J. C., Ronchail, J., Guyot, J. L., Junquas, C., Vauchel, P., Lavado, W., et al. (2011). Climate variability and extreme drought in the upper Solimões River (western Amazon Basin): Understanding the exceptional 2010 drought. Geophysical Research Letters,38(13), LI3406.  https://doi.org/10.1029/2011GL047862.CrossRefGoogle Scholar
  9. Frappart, F., Papa, F., da Silva, J. S., Ramillien, G., Prigent, C., Seyler, F., et al. (2012). Surface freshwater storage and dynamics in the Amazon basin during the 2005 exceptional drought. Environmental Research Letters,7(4), 044010.  https://doi.org/10.1088/1748-9326/7/4/044010.CrossRefGoogle Scholar
  10. Fu, R., Yin, L., Li, W., Arias, P. A., Dickinson, R. E., Huang, L., et al. (2013). Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proceedings of the National Academy of Sciences,110(45), 18110–18115.  https://doi.org/10.1073/pnas.1302584110.CrossRefGoogle Scholar
  11. Fundação Amazonas Sustentável—FAS. (2011). Relatório de Gestão 2011. Disponível em: http://fas-amazonas.org/versao/2012/wordpress/wp-content/uploads/2012/06/RELAT%C3%93RIO-DE-GEST%C3%83O-2011-FAS.pdf. Acesso em 15 Mar 2017.
  12. Ganteaume, A., & Long-Fournel, M. (2015). Driving factors of fire density can spatially vary at the local scale in south-eastern France. International Journal of Wildland Fire,24(5), 650–664.  https://doi.org/10.1071/WF13209.CrossRefGoogle Scholar
  13. Hilker, T., Lyapustin, A. I., Tucker, C. J., Hall, F. G., Myneni, R. B., Wang, Y., et al. (2014). Vegetation dynamics and rainfall sensitivity of the Amazon. Proceedings of the National Academy of Sciences,111(45), 16041–16046.  https://doi.org/10.1073/pnas.1404870111.CrossRefGoogle Scholar
  14. Instituto Brasileiro de Geografia e Estatística—IBGE. (2017a). Estados. Disponível em: http://www.ibge.gov.br/estadosat/perfil.php?sigla=am. Acesso em 12 July 2017.
  15. Instituto Brasileiro de Geografia e Estatística—IBGE. (2017b). Geociências. Disponível em:  http://downloads.ibge.gov.br/downloads_geociencias.htm. Acesso em 12 July 2017.
  16. Instituto Brasileiro de Geografia e Estatística—IBGE. (2018). Manual técnico da vegetação brasileira. Disponível em: https://biblioteca.ibge.gov.br/visualizacao/livros/liv63011.pdf. Acesso em 26 Jan 2018.
  17. Instituto Nacional de Pesquisas Espaciais—INPE. (2017). Banco de Dados de Queimadas. Disponível em: https://prodwww-queimadas.dgi.inpe.br/bdqueimadas. Acesso em 12 July 2017.
  18. IPCC-Intergovernmental Panel on Climate Change. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R. K. Pachauri and L. A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 2014. 151 pp.Google Scholar
  19. Lopes, M. O., Peralta, D. F., Carmo, D. M. D., & Silva, M. R. P. D. (2016). Estudo comparativo de comunidades de briófitas sujeitas a diferentes graus de inundação no município de São Domingos do Capim, PA, Brasil. Hoehnea,43(2), 159–171.  https://doi.org/10.1590/2236-8906-54/2015.CrossRefGoogle Scholar
  20. Machado, N. G., Silva, F. C. P., & Biudes, M. S. (2014). Efeito das condições meteorológicas sobre o risco de incêndio e o número de queimadas urbanas e focos de calor em Cuiabá-MT, Brasil. Ciência e Natura,36(3), 459–469.  https://doi.org/10.5902/2179460X11892.CrossRefGoogle Scholar
  21. Marengo, J. A., Nobre, C. A., Tomasella, J., Oyama, M. D., de Oliveira, G. S., De Oliveira, R., et al. (2008). The drought of Amazonia in 2005. Journal of Climate,21(3), 495–516.  https://doi.org/10.1175/2007JCLI1600.1.CrossRefGoogle Scholar
  22. Marengo, J. A., Tomasella, J., Alves, L. M., Soares, W. R., & Rodriguez, D. A. (2011). The drought of 2010 in the context of historical droughts in the Amazon region. Geophysical Research Letters.  https://doi.org/10.1029/2011GL047436.CrossRefGoogle Scholar
  23. Mendoza, E. R. H. (2003). Susceptibilidade da floresta primária ao fogo em 1998 e 1999: estudo de caso no Acre, Amazônia sul-ocidental, Brasil. 40 p. Dissertação (Mestrado em Ecologia e Manejo de Recursos Naturais). Universidade Federal do Acre, Rio Branco.Google Scholar
  24. Morisette, J. T., Giglio, L., Csiszar, I., Setzer, A., Schroeder, W., Morton, D., et al. (2005). Validation of MODIS active fire detection products derived from two algorithms. Earth Interactions,9(9), 1–25.  https://doi.org/10.1175/EI141.1.CrossRefGoogle Scholar
  25. Ray, D., Nepstad, D., & Moutinho, P. (2005). Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecological Applications,15(5), 1664–1678.  https://doi.org/10.1890/05-0404.CrossRefGoogle Scholar
  26. Sena, J. A., de Deus, L. A. B., Freitas, M. A. V., & Costa, L. (2012). Extreme events of droughts and floods in Amazonia: 2005 and 2009. Water Resources Management,26(6), 1665–1676.  https://doi.org/10.1007/s11269-012-9978-3.CrossRefGoogle Scholar
  27. Smith, L. T., Aragao, L. E., Sabel, C. E., & Nakaya, T. (2014). Drought impacts on children’s respiratory health in the Brazilian Amazon. Scientific Reports,4, 3726.  https://doi.org/10.1038/srep03726.CrossRefGoogle Scholar
  28. Smith, M., Goodchild, M. F., & Longley, P.A. (2015). Geoespatial analisys. A comprehensive guide to principles techniques and software tools. Edition. Disponível em: http://www.spatialanalysisonline.com/. Acesso em 12 July 2017.
  29. Souza, N., Silva, E., Teixeira, M. D., Leite, L. R., Reis, A., Souza, L., & Rezende, T. (2013). Aplicação do Estimador de densidade Kernel em unidades de conservação na bacia do Rio São Francisco para análise de focos de desmatamento e focos de calor. XVI SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, Foz do Iguaçu, PR. Disponível em: http://marte2.sid.inpe.br/col/dpi.inpe.br/marte2/2013/05.29.00.28.09/doc/p1135.pdf. Acesso em 12 July 2017.
  30. Tien Bui, D., Le, K. T. T., Nguyen, V. C., Le, H. D., & Revhaug, I. (2016). Tropical forest fire susceptibility mapping at the Cat Ba National Park Area, Hai Phong City, Vietnam, using GIS-based kernel logistic regression. Remote Sensing,8(4), 347.  https://doi.org/10.3390/rs8040347.CrossRefGoogle Scholar
  31. Torres, F. T. P. (2006). Relações entre fatores climáticos e ocorrências de incêndios florestais na cidade de Juiz de Fora (MG). Caminhos de Geografia,7(18), 162–171.Google Scholar
  32. Vasconcelos, S. S., Fearnside, P. M., Teixeira-Silva, P. R., Dias, D. V., & Graça, P. M. L. D. A. (2015). Suscetibilidade da vegetação ao fogo no sul do Amazonas sob condições meteorológicas atípicas durante a seca de 2005. Revista Brasileira de Meteorologia,30(2), 134–144.  https://doi.org/10.1590/0102-778620140070.CrossRefGoogle Scholar
  33. Wu, Z., He, H. S., Yang, J., Liu, Z., & Liang, Y. (2014). Relative effects of climatic and local factors on fire occurrence in boreal forest landscapes of northeastern China. Science of the Total Environment,493, 472–480.  https://doi.org/10.1016/j.scitotenv.2014.06.011.CrossRefGoogle Scholar
  34. Xavier, A. C., King, C. W., & Scanlon, B. R. (2015). Daily gridded meteorological variables in Brazil (1980–2013). International Journal of Climatology,36(6), 2644–2659.  https://doi.org/10.1002/joc.4518.CrossRefGoogle Scholar
  35. Xu, L., Samanta, A., Costa, M. H., Ganguly, S., Nemani, R. R., & Myneni, R. B. (2011). Widespread decline in greenness of Amazonian vegetation due to the 2010 drought. Geophysical Research Letters,38(7), L07402.  https://doi.org/10.1029/2011GL046824.CrossRefGoogle Scholar
  36. Zhao, W., Zhao, X., Zhou, T., Wu, D., Tang, B., & Wei, H. (2017). Climatic factors driving vegetation declines in the 2005 and 2010 Amazon droughts. PLoS ONE,12(4), e0175379.  https://doi.org/10.1371/journal.pone.0175379.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Maria Lucia Ferreira Barbosa
    • 1
  • Rafael Coll Delgado
    • 1
    • 6
    Email author
  • Paulo Eduardo Teodoro
    • 2
  • Marcos Gervasio Pereira
    • 3
  • Tamíres Partélli Correia
    • 1
  • Bruno Araujo Furtado de Mendonça
    • 4
  • Rafael de Ávila Rodrigues
    • 5
  1. 1.Programa de Pós-Graduação em Ciências Ambientais e FlorestaisUniversidade Federal Rural do Rio de Janeiro (UFRRJ)SeropédicaBrazil
  2. 2.Departamento de AgronomiaUniversidade Federal do Mato Grosso do Sul (UFMS)Chapadão do SulBrazil
  3. 3.Departamento de Solos da Universidade Federal Rural do Rio de JaneiroSeropédicaBrazil
  4. 4.Departamento de Silvicultura da Universidade Federal Rural do Rio de JaneiroSeropédicaBrazil
  5. 5.Unidade Acadêmica Especial Instituto de GeografiaUniversidade Federal de Goiás – Regional CatalãoCatalãoBrazil
  6. 6.Departamento de Ciências Ambientais, Instituto de FlorestasUniversidade Federal Rural do Rio de JaneiroSeropédicaBrazil

Personalised recommendations