Skip to main content

Advertisement

Log in

Influences of soil erosion susceptibility toward overloading vulnerability of the gully head bundhs in Mayurakshi River basin of eastern Chottanagpur Plateau

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Soil erosion in the upper catchment of lateritic belt of the Mayurakshi River is one of the major problems. Excessive soil erosion leads the gully head bundhs (reservoir) hyper sedimented. These bundhs were constructed under Massanjore Dam projects for arresting soil erosion and reducing sedimentation rate in the reservoir of the Massanjore Dam. This paper intended to investigate the present state of gully head reservoirs in connection with sedimentation and find out whether these vulnerable gully head bundhs are located at the extremely soil erosion susceptible zone. Soil erosion and gully head over loading vulnerability models generated in this aim, and it is found that highly vulnerable gully head bunds are located at the excessive soil erosion zone and therefore these two models are spatially correlated. It is revealed that in the extremely susceptible soil erosion zone, 105 nos. or 52.5% to total extremely overloading vulnerable gully head bundhs are located and frequency density of them in the same area is 0.1204 nos./sq km. From this spatial adjacency, it can be stated that extreme soil erosion susceptibility and soil loss (19.62 Mg/ha/year) are principally responsible for making the reservoirs vulnerable. These reservoirs play vital role for arresting soil erosion, and as these are not evenly distributed even in the extremely soil erosion susceptible zone, more number of such reservoirs can be installed there.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Agnesi, V., Angileri, S., Cappadonia, C., Conoscenti, C., & Rotigliano, E. (2011). Multi-parametric GIS analysis to assess gully erosion susceptibility: a test in southern Sicily, Italy. Landform Analysis, 17, 15–20.

    Google Scholar 

  • Alemaw, A. F., Majuale, M., & Simalenga, T. (2013). Assessment of sedimentation impacts on small dams—A case of small reservoirs in the Lotsane catchment. Journal of Water Resource and Protection, 5, 1127–1132.

    Article  Google Scholar 

  • Anh, L. T. (2009). Regional scale soil erosion modeling for observation planning using RS & GIS techniques—A case study in the centre of Himalayan region. In 7th FIG regional conference, Hanoi, Vietnam (pp. 1–15).

  • Anrong, D., Sicong, Z., Xindong, H., Lihua, T., & Haibo, X. (2003). Case study of soil erosion supported by GIS & RS. In Proceedings of geoscience and remote sensing symposium (pp. 2857–2859).

  • Araujo, T. P., & Pejon, O. J. (2015). Topographic threshold to trigger gully erosion in a Tropical region—Brazil. In G. Lollino, M. Arattano, M. Rinaldi, O. Giustolisi, J. C. Marechal, & G. E. Grant (Eds.), Engineering geology for society and territory (pp. 627–630). Basel: Springer.

    Google Scholar 

  • Bagchi, K., & Mukerjee, K. N. (1983). Diagnostic survey of West Bengal(s). Department of Geography, Calcutta University, Pantg Delta & Rarh Bengal (pp. 17–19, 42–58).

  • Bajocco, S., Angelis, A. D., Perini, L., & Salvati, L. (2012). The impact of land use/land cover changes on land degradation dynamics: A Mediterranean case study. Environmental Management, 49(5), 980–989.

    Article  CAS  Google Scholar 

  • Banai, R. (1993). Fuzziness in geographic information systems: Contributions from the analytic hierarchy process. International Journal of Geographical Information System, 7(4), 315–329.

    Article  Google Scholar 

  • Bandopadhyay, S. (1987). Man initiated gullies and slope formation in a lateritic terrain at Santiniketan, West Bengal. Geographical Review of India, 49(4), 22–23.

    Google Scholar 

  • Behera, P., Durga Rao, K. H. V., & Das, K. K. (2005). Soil erosion modeling using MMF model-a remote sensing and GIS perspective. Journal of the Indian Society of Remote Sensing, 33(1), 165–176.

    Article  Google Scholar 

  • Bhattacharyya, A. (2014). Evolution of hydro genomic characteristics of flood in the Mayurakshi river basin of eastern India. Ph.D. Thesis, submitted to department of geography, Viswa-Bharati University.

  • Biswas, S. S., & Pani, P. (2015). Estimation of soil erosion using RUSLE and GIS techniques: A case study of Barakar River basin, Jharkhand, India. Modeling Earth Systems and Environment. doi:10.1007/s40808-015-0040-3.

    Article  Google Scholar 

  • Brune, G. M. (1953). Trap efficiency of reservoirs. Transactions American Geophysical Union, 34(3), 407–418.

    Article  Google Scholar 

  • Chakrabarty, S. C. (1970). Some consideration on the evolution of physiography of Bengal (p. 20). Calcutta, West Bengal: Geographical Institute, Presidency College.

    Google Scholar 

  • Chamoun, S., Cesare, G. D., & Schleiss, A. J. (2016). Managing reservoir sedimentation by venting turbidity currents: A review. International Journal of Sediment Research, 31(9), 195–204.

    Article  Google Scholar 

  • Conforti, M., Aucelli, P. P. C., Robustelli, G., & Scarciglia, F. (2011). Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Natural Hazards. doi:10.1007/s11069-010-9598-2.

    Article  Google Scholar 

  • Conoscenti, C., Angileri, S., Cappadonia, C., Rotigliano, E., Agnesi, E., & Marker, M. (2013). Gully erosion susceptibility assessment by means of GIS-based logistic regression: A case of Sicily (Italy). Geomorphology. doi:10.1016/j.geomorph.2013.08.021.

    Article  Google Scholar 

  • Dai, Q., Liu, Z., Shao, H., & Yang, Z. (2015). Karst bare slope soil erosion and soil quality: A simulation case study. Solid Earth, 6(3), 985–995.

    Article  Google Scholar 

  • Deng, L., Shangguan, Z. P., & Li, R. (2012). Effects of the grain-for-green program on soil erosion in China. International Journal of Sediment Research, 27(1), 120–127.

    Article  Google Scholar 

  • Eastman, J. R. (1997). IDRISI for Windows, Version 2.0: Tutorial exercises. Worcester, MA: Graduate School of Geography, Clark University.

    Google Scholar 

  • Eastman, J. R. (2006). IDRISI Andes tutorial. Worcester, MA: Clark Labs., Clark University.

    Google Scholar 

  • El Baroudy, A. A., & Moghanm, F. S. (2014). Combined use of remote sensing and GIS for degradation risk assessment in some soils of the Northern Nile Delta Egypt. The Egyptian Journal of Remote Sensing and Space Sciences. doi:10.1016/j.ejrs.2014.01.001.

    Article  Google Scholar 

  • Erkossa, T., Wudneh, A., Desalegn, B., & Taye, G. (2015). Linking soil erosion to on-site financial cost: Lessons from watersheds in the Blue Nile basin. Solid Earth, 6(2), 765–774.

    Article  Google Scholar 

  • Flanagan, D. C., & Nearing, M. A. (1995). USDA-water erosion prediction project hillslope profile and watershed model documentation. NSERL Report, vol. 10. USDA-ARS National Soil Erosion Research Laboratory, West Lafayette, IN.

  • Flynn, K. O., Phillips, D. H., & Toland, M. (2013). Sediment changes upstream and downstream of the Altnahinch Dam in the River Bush in Northern Ireland: a preliminary study. Environmental Earth Sciences, 70(6), 2645–2657. doi:10.1007/s12665-013-2315-1.

    Article  Google Scholar 

  • Fournier, F. (1960). Climat et érosion: la relation entre l’érosion du sol par l’eau et les précipitations atmosphériques. Paris: Presses Universitaires de France.

    Google Scholar 

  • Fox, G. A., Sheshukov, A., Cruse, R., Kolar, R. L., Guertault, L., Gesch, K. R., et al. (2016). Reservoir sedimentation and upstream sediment sources: Perspectives and future research needs on streambank and gully erosion. Environmental Management, 57(5), 945–955. doi:10.1007/s00267-016-0671-9.

    Article  CAS  Google Scholar 

  • Gangcai, L., Jianhui, Z., Guanglong, T., & Chaofu, W. (2005). The effects of land uses on purplish soil erosion in hilly area Sichuan province, China. Journal of Mountain Science, 2(1), 68–75.

    Article  Google Scholar 

  • Gelagay, H. S., & Minale, A. S. (2016). Soil loss estimation using GIS and remote sensing techniques: A case of Koga watershed, Northern Ethiopia. International Soil and Water Conservation, 4, 126–136.

    Article  Google Scholar 

  • Ggosh, S. (2015). Mapping and monitoring of the impact of gully erosion in the district of medinipur (west), West Bengal, India. International Journal of Novel Research in Humanity and Social Sciences, 2(4), 73–89.

    Google Scholar 

  • Ghosh, S., & Guchhait, S. K. (2012). Soil loss estimation through USLE and MMF methods in the lateritic tracts of eastern plateau fringe of Rajmahal Traps, India. Ethiopian Journal of Environmental Studies and Management, 5(4), 529–541.

    Article  Google Scholar 

  • Ghosh, S., & Guchhait, S. K. (2015). Characterization and evolution of taterites in West Bengal: Implication on geology of northwest Bengal basin. Transactions of the Institute of Indian Geographers, 37(1), 93–119.

    Google Scholar 

  • Graf, W. L. (2006). Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology, 79, 336–360.

    Article  Google Scholar 

  • Guerra, C. A., Maces, J., Geijzendorffer, I., & Metzger, M. J. (2015). An assessment of soil erosion prevention by vegetation in Mediterranean Europe: Current trends of ecosystem service provision. Ecological Indicator, 60, 213–222.

    Article  Google Scholar 

  • Harris, F. A., Boasiako, O. A., Wakatsuiki, T., & Eric, T. A. (2012). Estimation of soil erodibility and rainfall erosivity patterns in the agroecological zones of Ghana. Journal of Soil Science and Environmental Management, 3(11), 275–279.

    Google Scholar 

  • Hassen, N. (2009). The assessment of erosion vulnerability using GIS and remote sensing application. In Master of Science Thesis Submitted in the Addis Ababa University.

  • Horton, R. E. (1932). Drainage basin characteristics. Transactions American Geophysical Union, 13, 350–361.

    Article  Google Scholar 

  • Islam, K. R., & Weil, R. R. (2000). Land use effects on soil quality in a tropical forest ecosyster of Bangladesh. Agriculture Ecosystem and Environment, 79, 9–16.

    Article  Google Scholar 

  • Jain, S. K., & Goel, M. K. (2009). Assessing the vulnerability to soil erosion of the Ukai dam catchments using remote sensing and GIS. Hydrological Sciences Journal, 47(1), 31–40.

    Article  Google Scholar 

  • Jasrotia, A. S., Dhiman, S. D., & Aggarwal, S. P. (2002). Rainfall runoff and soil erosion modeling using RS & GIS technique-a case study of Tons Watershed. Journal of the Indian Society of Remote Sensing, 30(3), 1–14.

    Article  Google Scholar 

  • Jha, V. C., & Kapat, S. (2003). Gully erosion and its implications on land use, a case study. In Land degradation and desertification (pp. 156–178). Publ. Jaipur and New Delhi.

  • Jha, V. C., & Kapat, S. (2009). Rill and gully erosion risk of lateritic terrain in South-Western Birbhum District, West Bengal, India. Sociedade & Natureza, Uberlândia, 21(2), 141–158.

    Article  Google Scholar 

  • Jha, V. C., & Kapat, S. (2011). Degraded lateritic soilscape and land uses in Birbhum district, West Bengal, India. Revista Sociedade and Natureza, 23(3), 545–556.

    Article  Google Scholar 

  • Joshi, V. U., Daniels, M. J., & Kale, V. S. (2013). Morphology and origin of valley-side gullies formed along the watersheds of Deccan Province, India and the Rangeland of Colorado, USA. Transactions, 35(1), 103–122.

    Google Scholar 

  • Joshi, V., Susware, N., & Sinha, D. (2016). Estimating soil loss from a watershed in Western Deccan, India, using Revised Universal Soil Loss Equation. Landscape & Environment. doi:10.21120/LE/10/1/2.

    Article  Google Scholar 

  • Kar, A., & Bandyopadhyay, M. K. (1974). Mechanism of rills: An investigation in micro-geomophology (Garhbeta Badland). Geographical Review of India, 36(3), 204–215.

    Google Scholar 

  • Kerr, J. (1997). The economics of soil degradation: From national policy to farmers’ needs. In F. Agus, F. W. T. Penning de Vries, & J. Kerr (Eds.), Soil erosion at multiple scales: Principles and methods for assessing causes and impacts. Wallingford: CABI Publishing.

    Google Scholar 

  • Khatun, S., & Pal, S. (2016). Identification of prospective surface water available zones with multi criteria decision approach in Kushkarani river basin of eastern india. Archives of Current Research International, 4(4), 1–20.

    Article  Google Scholar 

  • Kokh-Shrestha, M. (2002). Soil erosion modeling using remote sensing and GIS: a case study of Jhikhu Khola watershed, Nepal. Kathmandu, Nepal. http://www.a-a-rs.org/acrs/proceeding/ACRS2002/Papers/SAG02-7.pdf.

  • Kothyari, U. C., & Singh, V. P. (1996). Rainfall and temperature trends in India. Hydrological Process, 10(3), 357–372. doi:10.1002/(SICI)1099-1085(199603)10:3<357:AIDHYP305>3.0.CO;2-Y.

    Article  Google Scholar 

  • Li, X., Qiu, J., Shang, Q., & Li, F. (2016). Simulation of reservoir sediment flushing of the three gorges reservoir using an artificial neural network. Applied Science, 6(148), 1–11. doi:10.3390/app6050148.

    Article  Google Scholar 

  • Majumder, A., Ghosh, S., Dasgupta, A., & Seth, D. (2012). Analyzing reservoir sedimentation of Panchet dam, India using Remote Sensing and GIS. Panchakotessays, 2(3), 82–95.

    Google Scholar 

  • Mekonnen, M., Keesstra, S. D., Stroosnijder, L., Baartman, J. M., & Maroulis, J. (2015). Soil conservation through sediment trapping: A review. Land Degradation and Development, 26(6), 544–556.

    Article  Google Scholar 

  • Morgan, R. P. C., & Duzant, J. H. (2008). Modified MMF (Morgan–Morgan–Finney) model for evaluating effects of crops and vegetation cover on soil erosion. Earth Surface Processes and Landforms, 32, 90–106.

    Article  Google Scholar 

  • Mukhopadhyay, S., & Pal, S. (2008). Granulometry of soil, climatic phenomena and soil erosion in Khoai region. Indian Journal of Landscape and Ecological Studies, 31(1), 183–194.

    Google Scholar 

  • Nabi, G. (2004). Regional scale sediment yield modeling using GIS and remote Sensing. In Doctoral Thesis submitted in Centre of Excellence in Water Resources Engineering, University of Engineering and Technology, Lahore, Pakistan.

  • Narayana, V. V. D., & Babu, R. (1983). Estimation of soil loss in India. Journal of Irrigation and Drainage Engineering, 109(4), 419–433.

    Article  Google Scholar 

  • Novara, A., Keesstra, S., Cerdà, A., Pereira, P., & Gristina, L. (2016). Understanding the role of soil erosion on CO2-C loss using 13C isotopic signatures in abandoned Mediterranean agricultural land. Science of the Total Environment, 550, 330–336.

    Article  CAS  Google Scholar 

  • Pal, S. (2015). Erosion dynamics in lateritic Santiniketan Badland, West Bengal, India. In Daniel J. A. (ed.). Advances in environmental research, 40, 97–126.

  • Pal, S. (2015b). Impact of Massanjore Dam on hydro-geomorphological modification of Mayurakshi River. Eastern India: Environment Development and Sustainability. doi:10.1007/s10668-015-9679-1.

    Book  Google Scholar 

  • Pal, S. (2016a). Identification of soil erosion vulnerable areas in chandrabhaga river basin: A multi-criteria decision approach. Modeling Earth Systems and Environment, 2(5), 1–11. doi:10.1007/s40808-015-0052-z.

    Article  Google Scholar 

  • Pal, S. (2016b). Impact of Tilpara barrage on backwater reach of Kushkarni River: A tributary of Mayurakshi River. Environment, Development and Sustainability. doi:10.1007/s10668-016-9833-4.

    Article  Google Scholar 

  • Palaka, R., & Jai Sankar, G. (2015). Identification of potential zones for groundwater recharge in Kosigi Mandal, Kurnool District, using remote sensing and GIS. International Journal of Current Engineering and Technology, 5, 12–19.

    Google Scholar 

  • Pande, L. M., Prasad, J., Saha, S. K., & Subramanyam, C. (1992). Review of remote sensing applications to soils and agriculture. In Proceedings of Silver Jubilee Seminar. Dehra Dun: IIRS.

  • Phai, D. D., Orange, D., Migraine, J. B., Tran, D. T., & Nguyen, C. V. (1999). Applying GIS-assisted modeling to predict soil erosion for a Small agricultural watershed within sloping lands in Northern Vietnam. In Sloping lands and watershed management conference, Northern Vietnam (pp. 212–228). http://www.nafri.org.la/document/SSLWM/ch2_09_phai.pdf.

  • Prasannakumar, V., Vijith, H., Abhinod, S., & Geetha, N. (2016). Estimation of soil erosion risk within a small mountainous subwatershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geoinformation technology. Geoscience Frontiers. doi:10.1016/j.gsf.2011.11.003.

    Article  Google Scholar 

  • Primentel, D., & Kounang, N. (1998). Ecology of soil erosion in ecosystems. Ecosystems, 1, 418–426.

    Google Scholar 

  • Pritchard, S. (2002). Overloaded. International Water Power and Dam Construction, 54, 18–22.

    Google Scholar 

  • Prosdocimi, M., Cerdà, A., & Tarolli, P. (2016). Soil water erosion on Mediterranean vineyards: A review. CATENA, 141, 1–21.

    Article  Google Scholar 

  • Ranga, V., Poesen, J., Rompaey, A. V., Mohapatra, V., & Pani, P. (2016). Detection and analysis of badlands dynamics in the Chambal River Valley (India), during the last 40 (1971–2010) years. Environmental Earth Science, 75, 183.

    Article  Google Scholar 

  • Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Predicting Rainfall Erosion Losses—a Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE) U.S. Dept. Agriculture, Agricultural Handbook 703, Washington, DC, 404.

  • Renard, K. G., Foster, G. R., Weesies, G. A., & Porter, J. P. (1991). RUSLE—Revised universal soil loss equation. Journal of Soil and Water Conservation, 46(1), 30–33.

    Google Scholar 

  • Renschler, C. S., Mannaerts, C., & Diekkrüger, B. (1999). Valuating spatial and temporal variability in soil erosion risk—Rainfall erosivity and soil loss ratios in Andalusia, Spain. Catena, 34(3–4), 209–225. doi:10.1016/S0341-8162(98)00117-9.

    Article  Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process. New York, NY: McGraw-Hill.

    Google Scholar 

  • Samad, N., Chaudhry, M. H., Ashraf, M., Saleem, M., Hamid, Q., Babar, U., et al. (2016). Sediment yield assessment and identification of check dam sites for Rawal dam catchment. Arabian Journal of Geosciences, 9, 466. doi:10.1007/s12517-016-2484-9.

    Article  CAS  Google Scholar 

  • Sehra, S. K., Brar, Y. S., & Kaur, N. (2016). Applications of multi-criteria decision making in software engineering. International Journal of Advanced Computer Science and Applications, 7(7), 472–477.

    Google Scholar 

  • Sharda, V. N., & Dogra, P. (2013). Assessment of productivity and monetary losses due to water erosion in rainfed crops across different states of India for prioritization and conservation planning. Agricultural Research, 2(4), 382–392.

    Article  Google Scholar 

  • Shit, P. K., Bhunia, G. S., & Maiti, R. (2013). Assessment of factors affecting ephemeral Gully development in Badland topography: A case study at Garbheta Badland (Pashchim Medinipur, West Bengal, India). International Journal of Geosciences. doi:10.4236/ijg.2013.42043.

    Article  Google Scholar 

  • Shit, P. K., Bhunia, G. S., & Maiti, R. (2014). Morphology and development of selected badlands in South Bengal (India). Indian Journal of Geography and Environment, 13, 161–171.

    Google Scholar 

  • Shit, P. K., & Maiti, R. (2012). Rill Gully erosion in badland topography: Field measurement and monitoring (A case study on the Western Part of West Bengal, India). Saarbrücken: LAP LAMBERT Academic Publishing.

    Google Scholar 

  • Shit, P. K., Paira, P., Bhunia, G. S., & Maiti, R. (2015). Modeling of potential gully erosion hazard using geo-spatial technology at Garbheta block West Bengal in India. Modeling Earth Systems and Environment. doi:10.1007/s40808-015-0001-x.

    Article  Google Scholar 

  • Simons, D. B., & Sentruk, F. (1992). Sediment tranceport technology-water and sediment dynamics (p. 897). Littleton: Water Resource Publication.

    Google Scholar 

  • Singh, A. K., Kala, S., Dubey, S. K., Pande, V. C., Rao, B. K., Sharma, K. K., et al. (2015). Technology for rehabilitation of Yamuna ravines—Cost-effective practices to conserve natural resources through bamboo plantation. Current Science, 108(8), 1527–1533.

    Google Scholar 

  • Toy, T. J., & Foster, G. R. (1998). Use of the revised universal soil loss equation (RUSLE) version 1.06 on mined lands, construction sites, and reclaimed lands. U. S. Department of Interior, Office of Surface Mining, Reclamation, and Regulation, USA.

  • UNCED. (1992). Agenda 21: Programme of action for sustainable development, Rio declaration on environment and development, statement of principles. Final text of agreement negotiated by governments at the United Nations Conference on Environment and Development (UNCED), Rio de Janeiro, Brazil, UNDP, New York.

  • USDA. (1999). Natural resources conservation service, soil taxonomy a basic system of soil classification for making and interpreting soil surveys, 2nd edn.

  • USDA-NRCS. (2008). Revised universal soil loss equation Version 2. User’s Reference Guide, USDA Agricultural Research Service, Washington, DC.

  • Vorosmarty, C. J., Meybeck, M., Fekete, B., Sharma, K., Green, P., & Syvitski, J. P. M. (2003). Anthropogenic sediment retention: Major global impact from registered river impoundments. Global and Planetary Change, 39(1–2), 169–190.

    Article  Google Scholar 

  • Walling, D. E., & Fang, D. (2003). Recent trends in the suspended sediment loads of the world’s rivers. Global and Planetary Change, 39(1–2), 111–126.

    Article  Google Scholar 

  • Wang, R., Zhang, S., Pu, L., Yang, J., Yang, C., Chen, J., et al. (2016). Gully erosion mapping and monitoring at multiple scales based on multi-source remote sensing data of the Sancha River Catchment. Northeast China. doi:10.3390/ijgi5110200.

    Article  Google Scholar 

  • Wentworth, C. K. (1930). A simplified method of determining the average slope of land surfaces. American Journal of Science, 21, 184–194.

    Article  Google Scholar 

  • Williams, J. R. (1975). Sediment-yield prediction with Universal Equation using runoff energy factor. In Present and prospective technology for predicting sediment yield and sources, ARS-S40 (pp. 244–252).

  • Wischmeir, W. H., & Smith, D. (1978). Predicting rainfall erosion losses- a guide to conservation planning. U. S. Department of Agriculture, Agriculture Handbook No. 537.

  • Zhou, G., Wei, X., & Yan, J. (2002). Impacts of eucalyptus (Eucalyptus exserta) on sediment yield in Guangdong Province, Southern China—A kinetic energy approach. CATENA, 4, 231–251.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandipta Debanshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Debanshi, S. Influences of soil erosion susceptibility toward overloading vulnerability of the gully head bundhs in Mayurakshi River basin of eastern Chottanagpur Plateau. Environ Dev Sustain 20, 1739–1775 (2018). https://doi.org/10.1007/s10668-017-9963-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-017-9963-3

Keywords

Navigation