Environment, Development and Sustainability

, Volume 20, Issue 3, pp 1311–1328 | Cite as

Detection of potential harmful algal bloom-causing microalgae from freshwater prawn farms in Central Luzon, Philippines, for bloom monitoring and prediction

  • Kuselah Mae M. Tayaban
  • Katherine L. Pintor
  • Pierangeli G. Vital


Prawn aquaculture industry is one of the developing economic activities in the Philippines. Generally, a wide range of microalgae typically grow and proliferate in many aquaculture ponds. However, certain species of microalgae have the ability to form harmful algal blooms (HABs) which often bring damaging consequences to the aquaculture industry, food safety, and the environment. The study aims to identify and characterize the composition of microalgae (particularly Cyanophyta) that are capable of forming HABs in selected freshwater prawn culture ponds in Central Luzon, Philippines, using morphological, ultrastructural, and molecular characterizations. From water samples collected in ten selected ponds across Central Luzon (Bulacan, Nueva Ecija, Pampanga, Tarlac, and Zambales), potential HAB formers such as Oscillatoria agardhii, O. princeps, Microcystis aeruginosa, and M. wesenbergii were observed to have occurred mostly, while Anabaena circinalis was only observed in one site. Both morphological and ultrastructural methods brought upon some challenges and limitations while molecular methods using 16S rRNA gene and phylogenetic analysis which were optimized in this study offered better and more efficient ways of identification and were helpful in resolving genus-level and species-level relationships. The influence of physicochemical properties of pond water, especially nutrient levels (nitrate, nitrite, and orthophosphate) on the occurrence of these cyanobacteria was also analyzed. As a pioneering study on freshwater HABs in aquaculture ponds in the country, results of the study can provide information to improve the knowledge in bloom occurrence and prediction, and to develop freshwater HAB prevention and control methods.


Aquaculture Cyanobacteria Harmful algal blooms Phylogenetic analysis Ultrastructure 



The authors acknowledge the Office of the Chancellor of the University of the Philippines, Diliman, through the Office of the Vice Chancellor for Research and Development, for funding support through the PhD Incentive Award.


  1. APHA. (2005). Standard methods for the evaluation of water and wastewater (19th ed.). Washington DC: American Water Works Association.Google Scholar
  2. Backer, L. C., Manassaram-Baptiste, D., LePrell, R., & Bolton, B. (2015). Cyanobacteria and algae blooms: Review of health and environmental data from the harmful algal-bloom related illness surveillance system (HABISS) 2007–2011. Toxins, 7, 1048–1064.CrossRefGoogle Scholar
  3. BFAR-PHILMINAQ. (2007). Managing aquaculture and its impacts: a guidebook for local governments. Quezon City, Philippines: Bureau of Fisheries and Aquatic Resources.Google Scholar
  4. Centers for Disease Control and Prevention (CDC). (2016). Harmful Algal Bloom-associated illnesses. Atlanta, GA, USA: US Department of Health and Human Services.Google Scholar
  5. Eland, L. E., Davenport, R., & Mota, C. R. (2012). Evaluation of DNA extraction methods for freshwater eukaryotic microalgae. Water Research, 46(12), 5355–5364.CrossRefGoogle Scholar
  6. Gantt, E., & Conti, S. F. (1969). Ultrastructure of blue-green algae. Journal of Bacteriology, 97(3), 1486–1493.Google Scholar
  7. Harith, M. N., & Hassan, R. (2011). Blue-green algae and nutrient concentrations in two Tor tambroides aquaculture ponds differing in construction. Journal of Tropical Biology and Conservation, 8, 51–61.Google Scholar
  8. Hasani, Q., Adiwilaga, E. M., & Pratiwi, N. T. M. (2012). The relationship between harmful algal blooms (HABs) phenomenon with nutrients at shrimp farms and fish cage culture sites in Pesawaran District Lumpung Bay. Makara Journal of Science, 16(3), 183–191.Google Scholar
  9. Hernandez Marine, M., Clavero, E., & Roldan, M. (2004). Microscopy methods applied to research on cyanobacteria. Limnetica, 23(1–2), 179–186.Google Scholar
  10. Kormas, K. A., Gkelis, S., Vardaka, E., & Moustaka-Gouni, M. (2010). Morphological and molecular analysis of bloom-forming cyanobacteria in two, eutrophic, shallow Mediterranean Lakes. Limnologica. doi: 10.1016/j.limno.2010.10.003.Google Scholar
  11. Lopez, C. B., Jewett, E. B., Dortch, Q., Walton, B. T., & Hudnell, H. K. (2008). Scientific assessment of freshwater harmful algal blooms. Washington, DC: Interagency Working Group on Harmful Algal Blooms and Human Health of the Joint Subcommittee on Ocean Science and Technology.Google Scholar
  12. Lyra, C., Suomalainen, S., Gugger, M., Vezie, C., Sundman, P., Paulin, L., et al. (2001). Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. International Journal of Systematic and Evolutionary Microbiology, 51, 513–526.CrossRefGoogle Scholar
  13. Maso, M., & Garces, E. (2006). Harmful microalgae blooms (HABs): problematic and conditions that induce them. Marine Pollution Bulletin, 53, 620–630.CrossRefGoogle Scholar
  14. Mojica, M. J. J. (2005). Grow-out farming of the giant freshwater prawn. Quezon City, Philippines: Bureau of Agricultural Research.Google Scholar
  15. New, B. N. (2002). Farming freshwater prawns: a manual for the culture of the giant river prawn (Macrobrachium rosenbergii). Rome, Italy: Food and Agriculture Organization of the United Nations.Google Scholar
  16. Nubel, U., Garcia-Pichel, F., & Muyzer, G. (1997). PCR primers to amplify 16S rRNA genes of cyanobacteria. Applied and Environmental Microbiology, 63(8), 3327–3332.Google Scholar
  17. Onda, D. F. L., Benico, G., Sulit, A. F., Gaite, P. L., Azanza, R. V., & Luisma, A. O. (2013). Morphologial and molecular characterization of some-HAB-forming dinoflagellates from Philippines waters. Philippine Science Letters, 6(1), 97–106.Google Scholar
  18. Padmavathi, P., & Prasad, M. K. D. (2007). Studies on algal bloom disaters in carp culture ponds. Brazilian Journal of Morphological Sciences, 24(2), 32–43.Google Scholar
  19. Prommana, R., Peerapornpisal, Y., Whangchai, N., Morrison, L. F., Metcalf, J. S., Ruangyuttikarn, W., et al. (2006). Microcystins in cyanobacterial blooms from two freshwater prawn (Macrobrachium rosenbergii) ponds in Northern Thailand. Science Asia, 32(6), 365–370.CrossRefGoogle Scholar
  20. Rasmussen, J. P., Barbez, P. H., Burgoyne, L. A., & Saint, C. P. (2008). Rapid preparation of cyanobacterial DNA for real-time PCR analysis. Letters in Applied Microbiology, 46, 14–19.CrossRefGoogle Scholar
  21. Ruangrit, K., Whangchai, N., Pekkoh, J., Ruangyuttikarn, W., & Peerapornpisal, Y. (2011). First Report on microcystins contamination in giant freshwater prawn (Macrobrachium rosenbergii) and nile tilapia (Tilapia nilotica) in cultured earthen ponds. International Journal of Agriculture and Biology, 13, 1025–1028.Google Scholar
  22. Ruangrit, K., Peerapornpisal, Y., Pekkoh, J., & Whangchai, N. (2013). Microcystin accumulation in nile tilapia, Tilapia niloticus and giant freshwater prawns, Macrobrachium rosenbergii in green water system cultivation. International Journal of Geosciences, 4, 60–63.CrossRefGoogle Scholar
  23. Ruangsomboon, S., Yongmanitchai, W., Taveekijakarn, P., & Ganmanee, M. (2014). Cyanobacterial composition and microcystin accumulation in catfish pond. Changmai Journal of Science, 41(1), 27–38.Google Scholar
  24. Shaari, A., Surif, M., Latiff, F. A., Omar, W. M. W., & Ahmad, M. N. (2011). Monitoring of water quality and microalgae species of Penaeus monodon ponds in Pulau Pinang Malaysia. Tropical Life Science Research, 22(1), 51–69.Google Scholar
  25. Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae. Bacteriological Reviews, 35(2), 171–205.Google Scholar
  26. Tayamen, M. M. (2012). Nursery management operation for giant freshwater prawn Macrobrachium rosenbergii (De Man). Nueva Ecija, Philippines: National Freshwater Fisheries Technology Center.Google Scholar
  27. Turner, S., Pryer, K., Miao, V., & Palmer, J. (1999). Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. Journal of Eukaryotic Microbiology, 46, 327–338.CrossRefGoogle Scholar
  28. Valerio, E., Chambel, L., Paulino, S., Faria, N., Pereira, P., & Tenreiro, R. (2009). Molecular identification, typing and traceability of cyanobacteria from freshwater reservoir. Microbiology, 155, 642–656.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Kuselah Mae M. Tayaban
    • 1
  • Katherine L. Pintor
    • 1
  • Pierangeli G. Vital
    • 1
    • 2
  1. 1.Institute of Biology, College of Science, National Science ComplexUniversity of the Philippines DilimanQuezon CityPhilippines
  2. 2.Natural Sciences Research InstituteUniversity of the Philippines DilimanQuezon CityPhilippines

Personalised recommendations